IF 3.8 3区 医学 Q2 ENGINEERING, BIOMEDICAL Bioengineering Pub Date : 2025-02-04 DOI:10.3390/bioengineering12020146
Yu Sun, Jiaqi Liu, Li Zhu, Fang Huang, Yanbo Dong, Shuang Liu, Siyi Chen, Wei Ji, Jingjing Lu, Liangfa Liu, Shanhu Li
{"title":"Treatment Response to Oncolytic Virus in Patient-Derived Breast Cancer and Hypopharyngeal Cancer Organoids: Evaluation via a Microfluidics Organ-on-a-Chip System.","authors":"Yu Sun, Jiaqi Liu, Li Zhu, Fang Huang, Yanbo Dong, Shuang Liu, Siyi Chen, Wei Ji, Jingjing Lu, Liangfa Liu, Shanhu Li","doi":"10.3390/bioengineering12020146","DOIUrl":null,"url":null,"abstract":"<p><p>In this study, we present an oncolytic virus (OV) evaluation system established using microfluidic organ-on-a-chip (OOC) systems and patient-derived organoids (PDOs), which was used in the development of a novel oncolytic virus, AD4-GHPE. An OV offers advantages such as good targeting ability and minimal side effects, and it has achieved significant breakthroughs when combined with immunotherapy in recent clinical trials. The development of OVs has become an emerging research focus. PDOs can preserve the heterogeneity of in situ tumor tissues, whereas microfluidic OOC systems can automate and standardize various experimental procedures. These systems have been applied in cutting-edge drug screening and cell therapy experiments; however, their use in functionally complex oncolytic viruses remains to be explored. In this study, we constructed a novel recombinant oncolytic adenovirus, AD4-GHPE, and evaluated OOC systems and PDOs through various functional validations in hypopharyngeal and breast cancer organoids. The results confirmed that AD4-GHPE exhibits three antitumor mechanisms, namely, tumor-specific cytotoxicity, a reduction in programmed death ligand 1 (PD-L1) expression in tumor cells to increase CD8<sup>+</sup> T-cell activity, and granulocyte-macrophage colony-stimulating factor (GM-CSF) secretion. The evaluation system combining OOC systems and PDOs was efficient and reliable, providing personalized OV treatment recommendations for patients and offering industrialized and standardized research ideas for the development of OVs.</p>","PeriodicalId":8874,"journal":{"name":"Bioengineering","volume":"12 2","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11851931/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bioengineering12020146","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

本研究介绍了利用微流控芯片器官(OOC)系统和患者衍生器官(PDO)建立的溶瘤病毒(OV)评估系统,该系统用于新型溶瘤病毒AD4-GHPE的开发。OV具有靶向能力强、副作用小等优点,在最近的临床试验中与免疫疗法相结合取得了重大突破。OV的开发已成为一个新兴的研究重点。PDOs 可以保留原位肿瘤组织的异质性,而微流控 OOC 系统可以实现各种实验程序的自动化和标准化。这些系统已被应用于最前沿的药物筛选和细胞治疗实验,但它们在功能复杂的溶瘤病毒中的应用仍有待探索。在本研究中,我们构建了一种新型重组溶瘤腺病毒 AD4-GHPE,并在下咽癌和乳腺癌器官组织中通过各种功能验证评估了 OOC 系统和 PDO。结果证实,AD4-GHPE具有三种抗肿瘤机制,即肿瘤特异性细胞毒性、降低肿瘤细胞中程序性死亡配体1(PD-L1)的表达以提高CD8+ T细胞活性以及粒细胞-巨噬细胞集落刺激因子(GM-CSF)分泌。结合OOC系统和PDOs的评价系统高效可靠,为患者提供了个性化的OV治疗建议,为OV的开发提供了工业化、标准化的研究思路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Treatment Response to Oncolytic Virus in Patient-Derived Breast Cancer and Hypopharyngeal Cancer Organoids: Evaluation via a Microfluidics Organ-on-a-Chip System.

In this study, we present an oncolytic virus (OV) evaluation system established using microfluidic organ-on-a-chip (OOC) systems and patient-derived organoids (PDOs), which was used in the development of a novel oncolytic virus, AD4-GHPE. An OV offers advantages such as good targeting ability and minimal side effects, and it has achieved significant breakthroughs when combined with immunotherapy in recent clinical trials. The development of OVs has become an emerging research focus. PDOs can preserve the heterogeneity of in situ tumor tissues, whereas microfluidic OOC systems can automate and standardize various experimental procedures. These systems have been applied in cutting-edge drug screening and cell therapy experiments; however, their use in functionally complex oncolytic viruses remains to be explored. In this study, we constructed a novel recombinant oncolytic adenovirus, AD4-GHPE, and evaluated OOC systems and PDOs through various functional validations in hypopharyngeal and breast cancer organoids. The results confirmed that AD4-GHPE exhibits three antitumor mechanisms, namely, tumor-specific cytotoxicity, a reduction in programmed death ligand 1 (PD-L1) expression in tumor cells to increase CD8+ T-cell activity, and granulocyte-macrophage colony-stimulating factor (GM-CSF) secretion. The evaluation system combining OOC systems and PDOs was efficient and reliable, providing personalized OV treatment recommendations for patients and offering industrialized and standardized research ideas for the development of OVs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Bioengineering
Bioengineering Chemical Engineering-Bioengineering
CiteScore
4.00
自引率
8.70%
发文量
661
期刊介绍: Aims Bioengineering (ISSN 2306-5354) provides an advanced forum for the science and technology of bioengineering. It publishes original research papers, comprehensive reviews, communications and case reports. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. All aspects of bioengineering are welcomed from theoretical concepts to education and applications. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, four key features of this Journal: ● We are introducing a new concept in scientific and technical publications “The Translational Case Report in Bioengineering”. It is a descriptive explanatory analysis of a transformative or translational event. Understanding that the goal of bioengineering scholarship is to advance towards a transformative or clinical solution to an identified transformative/clinical need, the translational case report is used to explore causation in order to find underlying principles that may guide other similar transformative/translational undertakings. ● Manuscripts regarding research proposals and research ideas will be particularly welcomed. ● Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. ● We also accept manuscripts communicating to a broader audience with regard to research projects financed with public funds. Scope ● Bionics and biological cybernetics: implantology; bio–abio interfaces ● Bioelectronics: wearable electronics; implantable electronics; “more than Moore” electronics; bioelectronics devices ● Bioprocess and biosystems engineering and applications: bioprocess design; biocatalysis; bioseparation and bioreactors; bioinformatics; bioenergy; etc. ● Biomolecular, cellular and tissue engineering and applications: tissue engineering; chromosome engineering; embryo engineering; cellular, molecular and synthetic biology; metabolic engineering; bio-nanotechnology; micro/nano technologies; genetic engineering; transgenic technology ● Biomedical engineering and applications: biomechatronics; biomedical electronics; biomechanics; biomaterials; biomimetics; biomedical diagnostics; biomedical therapy; biomedical devices; sensors and circuits; biomedical imaging and medical information systems; implants and regenerative medicine; neurotechnology; clinical engineering; rehabilitation engineering ● Biochemical engineering and applications: metabolic pathway engineering; modeling and simulation ● Translational bioengineering
期刊最新文献
Inflammatory Cell-Targeted Delivery Systems for Myocardial Infarction Treatment. Biomedical Applications of Big Data and Artificial Intelligence. An Innovative Coded Language for Transferring Data via a Haptic Thermal Interface. Development of Mathematical Model for Understanding Microcirculation in Diabetic Foot Ulcers Based on Ankle-Brachial Index. Different Oral Appliance Designs Demonstrate Different Rates of Efficacy for the Treatment of Obstructive Sleep Apnea: A Review Article.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1