Sachin P Patil, Bella R Kuehn, Christina McCullough, Dean Bates, Hadil Hazim, Mamadou Diallo, Naomie Francois
{"title":"发现天然类黄酮异巴伐醌可作为治疗阿尔茨海默病的载脂蛋白 E4 (ApoE4) 结构矫正剂。","authors":"Sachin P Patil, Bella R Kuehn, Christina McCullough, Dean Bates, Hadil Hazim, Mamadou Diallo, Naomie Francois","doi":"10.3390/molecules30040940","DOIUrl":null,"url":null,"abstract":"<p><p>Alzheimer's disease (AD) is a progressive neurodegenerative disease characterized by extensive neurodegeneration and consequent severe memory loss. Apolipoprotein E4 (ApoE4) is the strongest genetic risk factor for AD, with its pathological effects linked to structural instability and altered interactions with lipids and other important disease proteins including amyloid beta (Aβ) and tau (<i>τ</i>). Therefore, correcting and stabilizing the ApoE4 structure has emerged as a promising therapeutic strategy for mitigating its detrimental effects. In this study, we investigated naturally occurring bioavailable flavonoids as ApoE4 stabilizers, focusing on their potential to modulate ApoE4 structure and function. A comprehensive investigation of a focused database using our integrated computational and experimental screening protocol led to the identification of Isobavachin as a potential corrector and stabilizer of ApoE4 structure. In addition, a few other bioavailable flavonoids with similar stabilizing properties were identified, albeit to a much lesser extent as compared to Isobavachin. The findings support the therapeutic potential of flavonoids as ApoE4 modulators and highlight Isobavachin as a lead candidate for further preclinical evaluation. These results provide new insights into the pharmacological targeting of ApoE4 and open avenues for the development of flavonoid-based, ApoE-directed therapies for AD.</p>","PeriodicalId":19041,"journal":{"name":"Molecules","volume":"30 4","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Discovery of Isobavachin, a Natural Flavonoid, as an Apolipoprotein E4 (ApoE4) Structure Corrector for Alzheimer's Disease.\",\"authors\":\"Sachin P Patil, Bella R Kuehn, Christina McCullough, Dean Bates, Hadil Hazim, Mamadou Diallo, Naomie Francois\",\"doi\":\"10.3390/molecules30040940\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Alzheimer's disease (AD) is a progressive neurodegenerative disease characterized by extensive neurodegeneration and consequent severe memory loss. Apolipoprotein E4 (ApoE4) is the strongest genetic risk factor for AD, with its pathological effects linked to structural instability and altered interactions with lipids and other important disease proteins including amyloid beta (Aβ) and tau (<i>τ</i>). Therefore, correcting and stabilizing the ApoE4 structure has emerged as a promising therapeutic strategy for mitigating its detrimental effects. In this study, we investigated naturally occurring bioavailable flavonoids as ApoE4 stabilizers, focusing on their potential to modulate ApoE4 structure and function. A comprehensive investigation of a focused database using our integrated computational and experimental screening protocol led to the identification of Isobavachin as a potential corrector and stabilizer of ApoE4 structure. In addition, a few other bioavailable flavonoids with similar stabilizing properties were identified, albeit to a much lesser extent as compared to Isobavachin. The findings support the therapeutic potential of flavonoids as ApoE4 modulators and highlight Isobavachin as a lead candidate for further preclinical evaluation. These results provide new insights into the pharmacological targeting of ApoE4 and open avenues for the development of flavonoid-based, ApoE-directed therapies for AD.</p>\",\"PeriodicalId\":19041,\"journal\":{\"name\":\"Molecules\",\"volume\":\"30 4\",\"pages\":\"\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2025-02-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecules\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.3390/molecules30040940\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3390/molecules30040940","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Discovery of Isobavachin, a Natural Flavonoid, as an Apolipoprotein E4 (ApoE4) Structure Corrector for Alzheimer's Disease.
Alzheimer's disease (AD) is a progressive neurodegenerative disease characterized by extensive neurodegeneration and consequent severe memory loss. Apolipoprotein E4 (ApoE4) is the strongest genetic risk factor for AD, with its pathological effects linked to structural instability and altered interactions with lipids and other important disease proteins including amyloid beta (Aβ) and tau (τ). Therefore, correcting and stabilizing the ApoE4 structure has emerged as a promising therapeutic strategy for mitigating its detrimental effects. In this study, we investigated naturally occurring bioavailable flavonoids as ApoE4 stabilizers, focusing on their potential to modulate ApoE4 structure and function. A comprehensive investigation of a focused database using our integrated computational and experimental screening protocol led to the identification of Isobavachin as a potential corrector and stabilizer of ApoE4 structure. In addition, a few other bioavailable flavonoids with similar stabilizing properties were identified, albeit to a much lesser extent as compared to Isobavachin. The findings support the therapeutic potential of flavonoids as ApoE4 modulators and highlight Isobavachin as a lead candidate for further preclinical evaluation. These results provide new insights into the pharmacological targeting of ApoE4 and open avenues for the development of flavonoid-based, ApoE-directed therapies for AD.
期刊介绍:
Molecules (ISSN 1420-3049, CODEN: MOLEFW) is an open access journal of synthetic organic chemistry and natural product chemistry. All articles are peer-reviewed and published continously upon acceptance. Molecules is published by MDPI, Basel, Switzerland. Our aim is to encourage chemists to publish as much as possible their experimental detail, particularly synthetic procedures and characterization information. There is no restriction on the length of the experimental section. In addition, availability of compound samples is published and considered as important information. Authors are encouraged to register or deposit their chemical samples through the non-profit international organization Molecular Diversity Preservation International (MDPI). Molecules has been launched in 1996 to preserve and exploit molecular diversity of both, chemical information and chemical substances.