NPM:用最近配对法对 Omics 数据进行潜在批次效应校正。

Antonino Zito, Axel Martinelli, Mauro Masiero, Murat Akhmedov, Ivo Kwee
{"title":"NPM:用最近配对法对 Omics 数据进行潜在批次效应校正。","authors":"Antonino Zito, Axel Martinelli, Mauro Masiero, Murat Akhmedov, Ivo Kwee","doi":"10.1093/bioinformatics/btaf084","DOIUrl":null,"url":null,"abstract":"<p><strong>Motivation: </strong>Batch effects (BEs) are a predominant source of noise in omics data and often mask real biological signals. BEs remain common in existing datasets. Current methods for BE correction mostly rely on specific assumptions or complex models, and may not detect and adjust BEs adequately, impacting downstream analysis and discovery power. To address these challenges we developed NPM, a nearest-neighbor matching-based method that adjusts BEs and may outperform other methods in a wide range of datasets.</p><p><strong>Results: </strong>We assessed distinct metrics and graphical readouts, and compared our method to commonly used BE correction methods. NPM demonstrates ability in correcting for BEs, while preserving biological differences. It may outperform other methods based on multiple metrics. Altogether, NPM proves to be a valuable BE correction approach to maximize discovery in biomedical research, with applicability in clinical research where latent BEs are often dominant.</p><p><strong>Availability: </strong>NPM is freely available on GitHub (https://github.com/bigomics/NPM) and on Omics Playground (https://bigomics.ch/omics-playground). Computer codes for analyses are available at (https://github.com/bigomics/NPM). The datasets underlying this article are the following: GSE120099, GSE82177, GSE162760, GSE171343, GSE153380, GSE163214, GSE182440, GSE163857, GSE117970, GSE173078, GSE10846. All these datasets are publicly available and can be freely accessed on the Gene Expression Omnibus (GEO) repository.</p><p><strong>Supplementary information: </strong>Supplementary data are available at Bioinformatics online.</p>","PeriodicalId":93899,"journal":{"name":"Bioinformatics (Oxford, England)","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"NPM: Latent Batch Effects Correction of Omics data by Nearest Pair Matching.\",\"authors\":\"Antonino Zito, Axel Martinelli, Mauro Masiero, Murat Akhmedov, Ivo Kwee\",\"doi\":\"10.1093/bioinformatics/btaf084\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Motivation: </strong>Batch effects (BEs) are a predominant source of noise in omics data and often mask real biological signals. BEs remain common in existing datasets. Current methods for BE correction mostly rely on specific assumptions or complex models, and may not detect and adjust BEs adequately, impacting downstream analysis and discovery power. To address these challenges we developed NPM, a nearest-neighbor matching-based method that adjusts BEs and may outperform other methods in a wide range of datasets.</p><p><strong>Results: </strong>We assessed distinct metrics and graphical readouts, and compared our method to commonly used BE correction methods. NPM demonstrates ability in correcting for BEs, while preserving biological differences. It may outperform other methods based on multiple metrics. Altogether, NPM proves to be a valuable BE correction approach to maximize discovery in biomedical research, with applicability in clinical research where latent BEs are often dominant.</p><p><strong>Availability: </strong>NPM is freely available on GitHub (https://github.com/bigomics/NPM) and on Omics Playground (https://bigomics.ch/omics-playground). Computer codes for analyses are available at (https://github.com/bigomics/NPM). The datasets underlying this article are the following: GSE120099, GSE82177, GSE162760, GSE171343, GSE153380, GSE163214, GSE182440, GSE163857, GSE117970, GSE173078, GSE10846. All these datasets are publicly available and can be freely accessed on the Gene Expression Omnibus (GEO) repository.</p><p><strong>Supplementary information: </strong>Supplementary data are available at Bioinformatics online.</p>\",\"PeriodicalId\":93899,\"journal\":{\"name\":\"Bioinformatics (Oxford, England)\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-02-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioinformatics (Oxford, England)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/bioinformatics/btaf084\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics (Oxford, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/bioinformatics/btaf084","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
NPM: Latent Batch Effects Correction of Omics data by Nearest Pair Matching.

Motivation: Batch effects (BEs) are a predominant source of noise in omics data and often mask real biological signals. BEs remain common in existing datasets. Current methods for BE correction mostly rely on specific assumptions or complex models, and may not detect and adjust BEs adequately, impacting downstream analysis and discovery power. To address these challenges we developed NPM, a nearest-neighbor matching-based method that adjusts BEs and may outperform other methods in a wide range of datasets.

Results: We assessed distinct metrics and graphical readouts, and compared our method to commonly used BE correction methods. NPM demonstrates ability in correcting for BEs, while preserving biological differences. It may outperform other methods based on multiple metrics. Altogether, NPM proves to be a valuable BE correction approach to maximize discovery in biomedical research, with applicability in clinical research where latent BEs are often dominant.

Availability: NPM is freely available on GitHub (https://github.com/bigomics/NPM) and on Omics Playground (https://bigomics.ch/omics-playground). Computer codes for analyses are available at (https://github.com/bigomics/NPM). The datasets underlying this article are the following: GSE120099, GSE82177, GSE162760, GSE171343, GSE153380, GSE163214, GSE182440, GSE163857, GSE117970, GSE173078, GSE10846. All these datasets are publicly available and can be freely accessed on the Gene Expression Omnibus (GEO) repository.

Supplementary information: Supplementary data are available at Bioinformatics online.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Predicting circRNA-disease associations with shared units and multi-channel attention mechanisms. Vcfgl: A flexible genotype likelihood simulator for VCF/BCF files. FlowPacker: protein side-chain packing with torsional flow matching. SP-DTI: subpocket-informed transformer for drug-target interaction prediction. Relative quantification of proteins and post-translational modifications in proteomic experiments with shared peptides: a weight-based approach.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1