将氧化镍纳米棒-量子碳点混合复合材料作为海洋环境中EN3低碳钢的新型腐蚀防护涂层

IF 4.4 3区 化学 Q1 CHEMISTRY, INORGANIC & NUCLEAR Inorganic Chemistry Communications Pub Date : 2025-02-25 DOI:10.1016/j.inoche.2025.114206
K.S.G. Jagan , S. Surendhiran , S. Savitha , T.M. Naren Vidaarth , A. Karthik , N. Lenin , R. Senthilmurugan
{"title":"将氧化镍纳米棒-量子碳点混合复合材料作为海洋环境中EN3低碳钢的新型腐蚀防护涂层","authors":"K.S.G. Jagan ,&nbsp;S. Surendhiran ,&nbsp;S. Savitha ,&nbsp;T.M. Naren Vidaarth ,&nbsp;A. Karthik ,&nbsp;N. Lenin ,&nbsp;R. Senthilmurugan","doi":"10.1016/j.inoche.2025.114206","DOIUrl":null,"url":null,"abstract":"<div><div>This research endeavors to synthesize nickel oxide nanoparticles (NiO NPs) using a sonochemical process facilitated by a nitrate precursor and alkaline sodium hydroxide (NaOH). In parallel, carbon dots (CDs) were derived from lemon waste peels via a facile hydrothermal method. Subsequently, the reflux method fabricated nickel oxide- carbon dot nanocomposite (NiO/CDs) in a 5:1 ratio. The structural properties, including crystallography, crystallinity, particle size, and morphology, were comprehensively characterized using X-ray diffraction (XRD) and high-resolution transmission electron microscopy (HRTEM). The synthesized nanoparticles exhibit excellent dispersion, with mean particle sizes of approximately 36.46 nm for NiO NPs and 2.17 nm for carbon dots. The carbon dots defect ratio (ID/IG) characteristics feature was estimated as 0.94 using Raman spectroscopy. NiO, CDs, and NiO/CDs nanocomposite coating were developed using a doctor blade method on the EN3 mild steel specimens. Electrochemical impedance spectroscopy was conducted in marine water conditions with 3.5 wt% of NaCl and seawater to evaluate the stability of the nanostructured coating. Electrochemical analysis, such as the Nyquist plot, Tafel plot, and frequency response finding, demonstrated that NiO/CDs nanocomposite coating has enhanced corrosion protection in 3.5 wt% NaCl solution compares to seawater medium. These findings underscore the potential of the NiO/CDs nanostructured coating to extend the lifespan of industrial mild steel (EN3) specimens in seawater environments.</div></div>","PeriodicalId":13609,"journal":{"name":"Inorganic Chemistry Communications","volume":"175 ","pages":"Article 114206"},"PeriodicalIF":4.4000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hybrid NiO nano rods-quantum carbon dots composites as a novel corrosion protective coating on EN3 mild steel in the marine environment\",\"authors\":\"K.S.G. Jagan ,&nbsp;S. Surendhiran ,&nbsp;S. Savitha ,&nbsp;T.M. Naren Vidaarth ,&nbsp;A. Karthik ,&nbsp;N. Lenin ,&nbsp;R. Senthilmurugan\",\"doi\":\"10.1016/j.inoche.2025.114206\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This research endeavors to synthesize nickel oxide nanoparticles (NiO NPs) using a sonochemical process facilitated by a nitrate precursor and alkaline sodium hydroxide (NaOH). In parallel, carbon dots (CDs) were derived from lemon waste peels via a facile hydrothermal method. Subsequently, the reflux method fabricated nickel oxide- carbon dot nanocomposite (NiO/CDs) in a 5:1 ratio. The structural properties, including crystallography, crystallinity, particle size, and morphology, were comprehensively characterized using X-ray diffraction (XRD) and high-resolution transmission electron microscopy (HRTEM). The synthesized nanoparticles exhibit excellent dispersion, with mean particle sizes of approximately 36.46 nm for NiO NPs and 2.17 nm for carbon dots. The carbon dots defect ratio (ID/IG) characteristics feature was estimated as 0.94 using Raman spectroscopy. NiO, CDs, and NiO/CDs nanocomposite coating were developed using a doctor blade method on the EN3 mild steel specimens. Electrochemical impedance spectroscopy was conducted in marine water conditions with 3.5 wt% of NaCl and seawater to evaluate the stability of the nanostructured coating. Electrochemical analysis, such as the Nyquist plot, Tafel plot, and frequency response finding, demonstrated that NiO/CDs nanocomposite coating has enhanced corrosion protection in 3.5 wt% NaCl solution compares to seawater medium. These findings underscore the potential of the NiO/CDs nanostructured coating to extend the lifespan of industrial mild steel (EN3) specimens in seawater environments.</div></div>\",\"PeriodicalId\":13609,\"journal\":{\"name\":\"Inorganic Chemistry Communications\",\"volume\":\"175 \",\"pages\":\"Article 114206\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2025-02-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Inorganic Chemistry Communications\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S138770032500320X\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inorganic Chemistry Communications","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S138770032500320X","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Hybrid NiO nano rods-quantum carbon dots composites as a novel corrosion protective coating on EN3 mild steel in the marine environment
This research endeavors to synthesize nickel oxide nanoparticles (NiO NPs) using a sonochemical process facilitated by a nitrate precursor and alkaline sodium hydroxide (NaOH). In parallel, carbon dots (CDs) were derived from lemon waste peels via a facile hydrothermal method. Subsequently, the reflux method fabricated nickel oxide- carbon dot nanocomposite (NiO/CDs) in a 5:1 ratio. The structural properties, including crystallography, crystallinity, particle size, and morphology, were comprehensively characterized using X-ray diffraction (XRD) and high-resolution transmission electron microscopy (HRTEM). The synthesized nanoparticles exhibit excellent dispersion, with mean particle sizes of approximately 36.46 nm for NiO NPs and 2.17 nm for carbon dots. The carbon dots defect ratio (ID/IG) characteristics feature was estimated as 0.94 using Raman spectroscopy. NiO, CDs, and NiO/CDs nanocomposite coating were developed using a doctor blade method on the EN3 mild steel specimens. Electrochemical impedance spectroscopy was conducted in marine water conditions with 3.5 wt% of NaCl and seawater to evaluate the stability of the nanostructured coating. Electrochemical analysis, such as the Nyquist plot, Tafel plot, and frequency response finding, demonstrated that NiO/CDs nanocomposite coating has enhanced corrosion protection in 3.5 wt% NaCl solution compares to seawater medium. These findings underscore the potential of the NiO/CDs nanostructured coating to extend the lifespan of industrial mild steel (EN3) specimens in seawater environments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Inorganic Chemistry Communications
Inorganic Chemistry Communications 化学-无机化学与核化学
CiteScore
5.50
自引率
7.90%
发文量
1013
审稿时长
53 days
期刊介绍: Launched in January 1998, Inorganic Chemistry Communications is an international journal dedicated to the rapid publication of short communications in the major areas of inorganic, organometallic and supramolecular chemistry. Topics include synthetic and reaction chemistry, kinetics and mechanisms of reactions, bioinorganic chemistry, photochemistry and the use of metal and organometallic compounds in stoichiometric and catalytic synthesis or organic compounds.
期刊最新文献
Editorial Board Contents continued Graphical abstract TOC Graphical abstract TOC In situ synthesis of biocompatible NaY1−xGdxF4:Yb/Er nanoparticles for cell labeling and temperature sensing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1