V. Micheletti , E. Marchal , M. Gambiez , L. Dercle , M.E. Meyer , X. Palard Novello , A. Girard
{"title":"人工智能辅助[18F]FDG PET/CT 定量:大 B 细胞淋巴瘤中一种节省时间的方法","authors":"V. Micheletti , E. Marchal , M. Gambiez , L. Dercle , M.E. Meyer , X. Palard Novello , A. Girard","doi":"10.1016/j.mednuc.2025.01.142","DOIUrl":null,"url":null,"abstract":"<div><h3>Purpose</h3><div>To assess if AI-assisted segmentation on [18F]FDG PET/CT significantly reduces time in quantifying Total Metabolic Tumor Volume (TMTV) and the greatest distance between two lesions (Dmax) in large B-cell lymphoma (LBCL) patients.</div></div><div><h3>Methods</h3><div>A retrospective study at two institutions included 56 LBCL patients (Ann-Arbor staging: 14% with no disease, 25% stage I-II, 61% stage III-IV). Two methods were compared: AI-assisted segmentation (Pionus® v1.1.0, PAIRE, Paris) automatically identified lesions with expert correction of AI errors, while expert-led segmentation was fully manual. Both methods used a 41% SUVmax threshold.</div></div><div><h3>Results</h3><div>AI-assisted segmentation was 41% faster, saving an average of 104<!--> <!-->seconds per patient (152<!--> <!-->±<!--> <!-->134<!--> <!-->seconds vs. 255<!--> <!-->±<!--> <!-->270<!--> <!-->seconds, <em>P</em> <!--><<!--> <!-->0.001), with time saved correlating with TMTV (<em>r</em> <!-->=<!--> <!-->0.67, <em>P</em> <!--><<!--> <!-->0.001). No significant differences in TMTV or Dmax were found between methods. Intraclass correlation coefficients were high for both TMTV (0.91 and 0.95) and Dmax (0.97 and 0.95), with strong inter-reader agreement.</div></div><div><h3>Conclusion</h3><div>AI-assisted segmentation significantly reduces time for TMTV and Dmax measurement in LBCL patients, while maintaining high reliability and inter-reader agreement compared to manual methods.</div></div>","PeriodicalId":49841,"journal":{"name":"Medecine Nucleaire-Imagerie Fonctionnelle et Metabolique","volume":"49 2","pages":"Page 113"},"PeriodicalIF":0.2000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"AI-assisted [18F]FDG PET/CT quantification: A time-saving approach in large B-cell lymphoma\",\"authors\":\"V. Micheletti , E. Marchal , M. Gambiez , L. Dercle , M.E. Meyer , X. Palard Novello , A. Girard\",\"doi\":\"10.1016/j.mednuc.2025.01.142\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Purpose</h3><div>To assess if AI-assisted segmentation on [18F]FDG PET/CT significantly reduces time in quantifying Total Metabolic Tumor Volume (TMTV) and the greatest distance between two lesions (Dmax) in large B-cell lymphoma (LBCL) patients.</div></div><div><h3>Methods</h3><div>A retrospective study at two institutions included 56 LBCL patients (Ann-Arbor staging: 14% with no disease, 25% stage I-II, 61% stage III-IV). Two methods were compared: AI-assisted segmentation (Pionus® v1.1.0, PAIRE, Paris) automatically identified lesions with expert correction of AI errors, while expert-led segmentation was fully manual. Both methods used a 41% SUVmax threshold.</div></div><div><h3>Results</h3><div>AI-assisted segmentation was 41% faster, saving an average of 104<!--> <!-->seconds per patient (152<!--> <!-->±<!--> <!-->134<!--> <!-->seconds vs. 255<!--> <!-->±<!--> <!-->270<!--> <!-->seconds, <em>P</em> <!--><<!--> <!-->0.001), with time saved correlating with TMTV (<em>r</em> <!-->=<!--> <!-->0.67, <em>P</em> <!--><<!--> <!-->0.001). No significant differences in TMTV or Dmax were found between methods. Intraclass correlation coefficients were high for both TMTV (0.91 and 0.95) and Dmax (0.97 and 0.95), with strong inter-reader agreement.</div></div><div><h3>Conclusion</h3><div>AI-assisted segmentation significantly reduces time for TMTV and Dmax measurement in LBCL patients, while maintaining high reliability and inter-reader agreement compared to manual methods.</div></div>\",\"PeriodicalId\":49841,\"journal\":{\"name\":\"Medecine Nucleaire-Imagerie Fonctionnelle et Metabolique\",\"volume\":\"49 2\",\"pages\":\"Page 113\"},\"PeriodicalIF\":0.2000,\"publicationDate\":\"2025-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Medecine Nucleaire-Imagerie Fonctionnelle et Metabolique\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0928125825001421\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PATHOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medecine Nucleaire-Imagerie Fonctionnelle et Metabolique","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0928125825001421","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PATHOLOGY","Score":null,"Total":0}
AI-assisted [18F]FDG PET/CT quantification: A time-saving approach in large B-cell lymphoma
Purpose
To assess if AI-assisted segmentation on [18F]FDG PET/CT significantly reduces time in quantifying Total Metabolic Tumor Volume (TMTV) and the greatest distance between two lesions (Dmax) in large B-cell lymphoma (LBCL) patients.
Methods
A retrospective study at two institutions included 56 LBCL patients (Ann-Arbor staging: 14% with no disease, 25% stage I-II, 61% stage III-IV). Two methods were compared: AI-assisted segmentation (Pionus® v1.1.0, PAIRE, Paris) automatically identified lesions with expert correction of AI errors, while expert-led segmentation was fully manual. Both methods used a 41% SUVmax threshold.
Results
AI-assisted segmentation was 41% faster, saving an average of 104 seconds per patient (152 ± 134 seconds vs. 255 ± 270 seconds, P < 0.001), with time saved correlating with TMTV (r = 0.67, P < 0.001). No significant differences in TMTV or Dmax were found between methods. Intraclass correlation coefficients were high for both TMTV (0.91 and 0.95) and Dmax (0.97 and 0.95), with strong inter-reader agreement.
Conclusion
AI-assisted segmentation significantly reduces time for TMTV and Dmax measurement in LBCL patients, while maintaining high reliability and inter-reader agreement compared to manual methods.
期刊介绍:
Le but de Médecine nucléaire - Imagerie fonctionnelle et métabolique est de fournir une plate-forme d''échange d''informations cliniques et scientifiques pour la communauté francophone de médecine nucléaire, et de constituer une expérience pédagogique de la rédaction médicale en conformité avec les normes internationales.