人工智能辅助[18F]FDG PET/CT 定量:大 B 细胞淋巴瘤中一种节省时间的方法

V. Micheletti , E. Marchal , M. Gambiez , L. Dercle , M.E. Meyer , X. Palard Novello , A. Girard
{"title":"人工智能辅助[18F]FDG PET/CT 定量:大 B 细胞淋巴瘤中一种节省时间的方法","authors":"V. Micheletti ,&nbsp;E. Marchal ,&nbsp;M. Gambiez ,&nbsp;L. Dercle ,&nbsp;M.E. Meyer ,&nbsp;X. Palard Novello ,&nbsp;A. Girard","doi":"10.1016/j.mednuc.2025.01.142","DOIUrl":null,"url":null,"abstract":"<div><h3>Purpose</h3><div>To assess if AI-assisted segmentation on [18F]FDG PET/CT significantly reduces time in quantifying Total Metabolic Tumor Volume (TMTV) and the greatest distance between two lesions (Dmax) in large B-cell lymphoma (LBCL) patients.</div></div><div><h3>Methods</h3><div>A retrospective study at two institutions included 56 LBCL patients (Ann-Arbor staging: 14% with no disease, 25% stage I-II, 61% stage III-IV). Two methods were compared: AI-assisted segmentation (Pionus® v1.1.0, PAIRE, Paris) automatically identified lesions with expert correction of AI errors, while expert-led segmentation was fully manual. Both methods used a 41% SUVmax threshold.</div></div><div><h3>Results</h3><div>AI-assisted segmentation was 41% faster, saving an average of 104<!--> <!-->seconds per patient (152<!--> <!-->±<!--> <!-->134<!--> <!-->seconds vs. 255<!--> <!-->±<!--> <!-->270<!--> <!-->seconds, <em>P</em> <!-->&lt;<!--> <!-->0.001), with time saved correlating with TMTV (<em>r</em> <!-->=<!--> <!-->0.67, <em>P</em> <!-->&lt;<!--> <!-->0.001). No significant differences in TMTV or Dmax were found between methods. Intraclass correlation coefficients were high for both TMTV (0.91 and 0.95) and Dmax (0.97 and 0.95), with strong inter-reader agreement.</div></div><div><h3>Conclusion</h3><div>AI-assisted segmentation significantly reduces time for TMTV and Dmax measurement in LBCL patients, while maintaining high reliability and inter-reader agreement compared to manual methods.</div></div>","PeriodicalId":49841,"journal":{"name":"Medecine Nucleaire-Imagerie Fonctionnelle et Metabolique","volume":"49 2","pages":"Page 113"},"PeriodicalIF":0.2000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"AI-assisted [18F]FDG PET/CT quantification: A time-saving approach in large B-cell lymphoma\",\"authors\":\"V. Micheletti ,&nbsp;E. Marchal ,&nbsp;M. Gambiez ,&nbsp;L. Dercle ,&nbsp;M.E. Meyer ,&nbsp;X. Palard Novello ,&nbsp;A. Girard\",\"doi\":\"10.1016/j.mednuc.2025.01.142\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Purpose</h3><div>To assess if AI-assisted segmentation on [18F]FDG PET/CT significantly reduces time in quantifying Total Metabolic Tumor Volume (TMTV) and the greatest distance between two lesions (Dmax) in large B-cell lymphoma (LBCL) patients.</div></div><div><h3>Methods</h3><div>A retrospective study at two institutions included 56 LBCL patients (Ann-Arbor staging: 14% with no disease, 25% stage I-II, 61% stage III-IV). Two methods were compared: AI-assisted segmentation (Pionus® v1.1.0, PAIRE, Paris) automatically identified lesions with expert correction of AI errors, while expert-led segmentation was fully manual. Both methods used a 41% SUVmax threshold.</div></div><div><h3>Results</h3><div>AI-assisted segmentation was 41% faster, saving an average of 104<!--> <!-->seconds per patient (152<!--> <!-->±<!--> <!-->134<!--> <!-->seconds vs. 255<!--> <!-->±<!--> <!-->270<!--> <!-->seconds, <em>P</em> <!-->&lt;<!--> <!-->0.001), with time saved correlating with TMTV (<em>r</em> <!-->=<!--> <!-->0.67, <em>P</em> <!-->&lt;<!--> <!-->0.001). No significant differences in TMTV or Dmax were found between methods. Intraclass correlation coefficients were high for both TMTV (0.91 and 0.95) and Dmax (0.97 and 0.95), with strong inter-reader agreement.</div></div><div><h3>Conclusion</h3><div>AI-assisted segmentation significantly reduces time for TMTV and Dmax measurement in LBCL patients, while maintaining high reliability and inter-reader agreement compared to manual methods.</div></div>\",\"PeriodicalId\":49841,\"journal\":{\"name\":\"Medecine Nucleaire-Imagerie Fonctionnelle et Metabolique\",\"volume\":\"49 2\",\"pages\":\"Page 113\"},\"PeriodicalIF\":0.2000,\"publicationDate\":\"2025-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Medecine Nucleaire-Imagerie Fonctionnelle et Metabolique\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0928125825001421\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PATHOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medecine Nucleaire-Imagerie Fonctionnelle et Metabolique","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0928125825001421","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PATHOLOGY","Score":null,"Total":0}
引用次数: 0
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
AI-assisted [18F]FDG PET/CT quantification: A time-saving approach in large B-cell lymphoma

Purpose

To assess if AI-assisted segmentation on [18F]FDG PET/CT significantly reduces time in quantifying Total Metabolic Tumor Volume (TMTV) and the greatest distance between two lesions (Dmax) in large B-cell lymphoma (LBCL) patients.

Methods

A retrospective study at two institutions included 56 LBCL patients (Ann-Arbor staging: 14% with no disease, 25% stage I-II, 61% stage III-IV). Two methods were compared: AI-assisted segmentation (Pionus® v1.1.0, PAIRE, Paris) automatically identified lesions with expert correction of AI errors, while expert-led segmentation was fully manual. Both methods used a 41% SUVmax threshold.

Results

AI-assisted segmentation was 41% faster, saving an average of 104 seconds per patient (152 ± 134 seconds vs. 255 ± 270 seconds, P < 0.001), with time saved correlating with TMTV (r = 0.67, P < 0.001). No significant differences in TMTV or Dmax were found between methods. Intraclass correlation coefficients were high for both TMTV (0.91 and 0.95) and Dmax (0.97 and 0.95), with strong inter-reader agreement.

Conclusion

AI-assisted segmentation significantly reduces time for TMTV and Dmax measurement in LBCL patients, while maintaining high reliability and inter-reader agreement compared to manual methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.30
自引率
0.00%
发文量
160
审稿时长
19.8 weeks
期刊介绍: Le but de Médecine nucléaire - Imagerie fonctionnelle et métabolique est de fournir une plate-forme d''échange d''informations cliniques et scientifiques pour la communauté francophone de médecine nucléaire, et de constituer une expérience pédagogique de la rédaction médicale en conformité avec les normes internationales.
期刊最新文献
Editorial board Évaluation de modèles de segmentation automatique combinés ou séparés pour le TEP/TDM au 68Ga-PSMA et le TEMP/TDM au 177Lu-PSMA Étude de la relation entre dosimétrie tumorale corps-entier à C1 et l’efficacité thérapeutique dans les traitements de mCRPC par 177Lu-PSMA-617 Validation du “Collapsed Cone Superposition” pour la dosimétrie corps entier dans la thérapie par 177Lu-PSMA-617 Bilan de l’enquête SFPM sur l’état des lieux des pratiques SIRT/RIV en physique médicale en France
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1