Patryk Golec;Eva Bestelink;Radu A. Sporea;Benjamin Iñiguez
{"title":"直流应用源极晶体管的物理紧凑模型","authors":"Patryk Golec;Eva Bestelink;Radu A. Sporea;Benjamin Iñiguez","doi":"10.1109/TED.2024.3523885","DOIUrl":null,"url":null,"abstract":"We present the first physical compact model for an amorphous silicon source-gated transistor (SGT) with variable Schottky barrier height. The previously published empirical compact model and TCAD model of an SGT are used to identify dominant effects present. The compact model is then validated on real device measurements. The compact model aims to operate under common conditions and typically desirable regimes of operation for an SGT, such as the flat saturation regime occurring at a particularly low saturation voltage. The dominant injection mechanisms occur through thermionic and thermionic field emission, which are the contact effects present in an SGT. Thermionic emission tends to be dominant under most common conditions. The model is suitably accurate to be used as a representation of an SGT in a SPICE simulation. This can be seen as a first step toward analog circuit design with SGTs as compact models enable circuit designers to utilize new and unique devices.","PeriodicalId":13092,"journal":{"name":"IEEE Transactions on Electron Devices","volume":"72 3","pages":"952-958"},"PeriodicalIF":2.9000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Physical Compact Model for Source-Gated Transistors for DC Application\",\"authors\":\"Patryk Golec;Eva Bestelink;Radu A. Sporea;Benjamin Iñiguez\",\"doi\":\"10.1109/TED.2024.3523885\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present the first physical compact model for an amorphous silicon source-gated transistor (SGT) with variable Schottky barrier height. The previously published empirical compact model and TCAD model of an SGT are used to identify dominant effects present. The compact model is then validated on real device measurements. The compact model aims to operate under common conditions and typically desirable regimes of operation for an SGT, such as the flat saturation regime occurring at a particularly low saturation voltage. The dominant injection mechanisms occur through thermionic and thermionic field emission, which are the contact effects present in an SGT. Thermionic emission tends to be dominant under most common conditions. The model is suitably accurate to be used as a representation of an SGT in a SPICE simulation. This can be seen as a first step toward analog circuit design with SGTs as compact models enable circuit designers to utilize new and unique devices.\",\"PeriodicalId\":13092,\"journal\":{\"name\":\"IEEE Transactions on Electron Devices\",\"volume\":\"72 3\",\"pages\":\"952-958\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-01-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Electron Devices\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10856354/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Electron Devices","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10856354/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Physical Compact Model for Source-Gated Transistors for DC Application
We present the first physical compact model for an amorphous silicon source-gated transistor (SGT) with variable Schottky barrier height. The previously published empirical compact model and TCAD model of an SGT are used to identify dominant effects present. The compact model is then validated on real device measurements. The compact model aims to operate under common conditions and typically desirable regimes of operation for an SGT, such as the flat saturation regime occurring at a particularly low saturation voltage. The dominant injection mechanisms occur through thermionic and thermionic field emission, which are the contact effects present in an SGT. Thermionic emission tends to be dominant under most common conditions. The model is suitably accurate to be used as a representation of an SGT in a SPICE simulation. This can be seen as a first step toward analog circuit design with SGTs as compact models enable circuit designers to utilize new and unique devices.
期刊介绍:
IEEE Transactions on Electron Devices publishes original and significant contributions relating to the theory, modeling, design, performance and reliability of electron and ion integrated circuit devices and interconnects, involving insulators, metals, organic materials, micro-plasmas, semiconductors, quantum-effect structures, vacuum devices, and emerging materials with applications in bioelectronics, biomedical electronics, computation, communications, displays, microelectromechanics, imaging, micro-actuators, nanoelectronics, optoelectronics, photovoltaics, power ICs and micro-sensors. Tutorial and review papers on these subjects are also published and occasional special issues appear to present a collection of papers which treat particular areas in more depth and breadth.