IF 2.9 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Transactions on Electron Devices Pub Date : 2025-01-22 DOI:10.1109/TED.2025.3526906
Uttam Kumar Das;Xiaofeng Chen;Nabeel Aslam;Muhammad Ashraful Alam;Muhammad Mustafa Hussain;Nazek El-Atab
{"title":"Impact of Physical Stress on Gate Dielectric in Ultrathin Si Gate-Stack for Next-Generation Flexible CMOS Technology","authors":"Uttam Kumar Das;Xiaofeng Chen;Nabeel Aslam;Muhammad Ashraful Alam;Muhammad Mustafa Hussain;Nazek El-Atab","doi":"10.1109/TED.2025.3526906","DOIUrl":null,"url":null,"abstract":"In this article, we report the fabrication and characterizations of sub-20-<inline-formula> <tex-math>$\\mu $ </tex-math></inline-formula>m thin flexible Si die containing active devices. Thermally grown 2.62-nm silicon dioxide (SiO2), atomic layer deposition (ALD)-deposited 3-nm HfO2 (high-<inline-formula> <tex-math>$\\kappa $ </tex-math></inline-formula>), and 10-nm TiN layers are used to fabricate an array of MOSCAPs on Si wafers. The fabricated devices are characterized to analyze the doping density (<inline-formula> <tex-math>${N} _{a}$ </tex-math></inline-formula>), flat-band voltage (<inline-formula> <tex-math>${V} _{\\text {fb}}$ </tex-math></inline-formula>), threshold voltage (<inline-formula> <tex-math>${V} _{\\text {th}}$ </tex-math></inline-formula>), fixed oxide charge (<inline-formula> <tex-math>${Q} _{f}$ </tex-math></inline-formula>), and interface trap densities (<inline-formula> <tex-math>${D} _{\\text {it}}$ </tex-math></inline-formula>). Then, a deep reactive ion etching (DRIE) reduces the die thickness to <inline-formula> <tex-math>$\\sim 15\\mu $ </tex-math></inline-formula>m for flexibility. The encapsulated flexible devices are found to have relatively better breakdown performances when tested in compressive stressing and no variations when in tensile stress. The time-dependent dielectric breakdown (TDDB) measurement shows a minimal variation in flexible and bulk devices. The TDDB and a voltage acceleration slope are projected in flexible devices after performing a 10000 times bending and relaxation process (cycling).","PeriodicalId":13092,"journal":{"name":"IEEE Transactions on Electron Devices","volume":"72 3","pages":"959-964"},"PeriodicalIF":2.9000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Electron Devices","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10848522/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

在这篇文章中,我们报告了包含有源器件的亚 20- $\mu $ m 薄柔性硅芯片的制造和特性分析。我们使用热生长的 2.62 nm 二氧化硅 (SiO2)、原子层沉积 (ALD) 沉积的 3 nm HfO2(高 $/kappa $)和 10 nm TiN 层在硅晶片上制造出 MOSCAP 阵列。对制作的器件进行了表征,分析了掺杂密度(${N} _{a}$)、平带电压(${V} _{\text {fb}}$)、阈值电压(${V} _{\text {th}}$)、固定氧化物电荷(${Q} _{f}$)和界面陷阱密度(${D} _{\text {it}}$)。然后,通过深反应离子刻蚀(DRIE)将芯片厚度减小到 $\sim 15\mu $ m,以实现柔性。在压应力测试中,封装柔性器件的击穿性能相对较好,而在拉应力测试中则没有变化。随时间变化的介质击穿(TDDB)测量结果显示,柔性器件和块状器件的差异极小。在进行 10000 次弯曲和松弛过程(循环)后,挠性器件的 TDDB 和电压加速斜率得到预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Impact of Physical Stress on Gate Dielectric in Ultrathin Si Gate-Stack for Next-Generation Flexible CMOS Technology
In this article, we report the fabrication and characterizations of sub-20- $\mu $ m thin flexible Si die containing active devices. Thermally grown 2.62-nm silicon dioxide (SiO2), atomic layer deposition (ALD)-deposited 3-nm HfO2 (high- $\kappa $ ), and 10-nm TiN layers are used to fabricate an array of MOSCAPs on Si wafers. The fabricated devices are characterized to analyze the doping density ( ${N} _{a}$ ), flat-band voltage ( ${V} _{\text {fb}}$ ), threshold voltage ( ${V} _{\text {th}}$ ), fixed oxide charge ( ${Q} _{f}$ ), and interface trap densities ( ${D} _{\text {it}}$ ). Then, a deep reactive ion etching (DRIE) reduces the die thickness to $\sim 15\mu $ m for flexibility. The encapsulated flexible devices are found to have relatively better breakdown performances when tested in compressive stressing and no variations when in tensile stress. The time-dependent dielectric breakdown (TDDB) measurement shows a minimal variation in flexible and bulk devices. The TDDB and a voltage acceleration slope are projected in flexible devices after performing a 10000 times bending and relaxation process (cycling).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Electron Devices
IEEE Transactions on Electron Devices 工程技术-工程:电子与电气
CiteScore
5.80
自引率
16.10%
发文量
937
审稿时长
3.8 months
期刊介绍: IEEE Transactions on Electron Devices publishes original and significant contributions relating to the theory, modeling, design, performance and reliability of electron and ion integrated circuit devices and interconnects, involving insulators, metals, organic materials, micro-plasmas, semiconductors, quantum-effect structures, vacuum devices, and emerging materials with applications in bioelectronics, biomedical electronics, computation, communications, displays, microelectromechanics, imaging, micro-actuators, nanoelectronics, optoelectronics, photovoltaics, power ICs and micro-sensors. Tutorial and review papers on these subjects are also published and occasional special issues appear to present a collection of papers which treat particular areas in more depth and breadth.
期刊最新文献
Table of Contents IEEE Transactions on Electron Devices Publication Information Corrections to “Stimulated Secondary Emission of Single-Photon Avalanche Diodes” Call for Papers: Journal of Lightwave Technology Special Issue on OFS-29 Call for Nominations for Editor-in-Chief: IEEE Transactions on Semiconductor Manufacturing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1