{"title":"具有轻狄拉克中微子的离散暗物质","authors":"Debasish Borah, Pritam Das, Biswajit Karmakar, Satyabrata Mahapatra","doi":"10.1103/physrevd.111.035032","DOIUrl":null,"url":null,"abstract":"We propose a new realization of light Dirac neutrino mass and dark matter (DM) within the framework of a non-Abelian discrete flavor symmetry based on A</a:mi>4</a:mn></a:msub></a:math> group. In addition to <c:math xmlns:c=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><c:msub><c:mi>A</c:mi><c:mn>4</c:mn></c:msub></c:math>, we also consider a <e:math xmlns:e=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><e:msub><e:mi>Z</e:mi><e:mn>2</e:mn></e:msub></e:math> and an unbroken global lepton number symmetry <g:math xmlns:g=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><g:mi>U</g:mi><g:mo stretchy=\"false\">(</g:mo><g:mn>1</g:mn><g:msub><g:mo stretchy=\"false\">)</g:mo><g:mi>L</g:mi></g:msub></g:math> to keep unwanted terms away while guaranteeing the Dirac nature of light neutrinos. The field content, their transformations, and flavon vacuum alignments are chosen in such a way that the type-I Dirac seesaw generates only one light Dirac neutrino mass while the other two masses arise from scotogenic contributions at one-loop. This leads to the Dirac scoto-seesaw framework, a generalization of the widely studied scoto-seesaw model to Dirac neutrinos. The symmetry breaking of <k:math xmlns:k=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><k:msub><k:mi>A</k:mi><k:mn>4</k:mn></k:msub></k:math> leaves a remnant <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><m:msub><m:mi mathvariant=\"script\">Z</m:mi><m:mn>2</m:mn></m:msub></m:math> symmetry responsible for stabilizing DM. Dirac nature of light neutrinos introduces additional relativistic degrees of freedom <p:math xmlns:p=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><p:mi mathvariant=\"normal\">Δ</p:mi><p:msub><p:mi>N</p:mi><p:mi>eff</p:mi></p:msub></p:math> within reach of cosmic microwave background experiments. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20167,"journal":{"name":"Physical Review D","volume":"35 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Discrete dark matter with light Dirac neutrinos\",\"authors\":\"Debasish Borah, Pritam Das, Biswajit Karmakar, Satyabrata Mahapatra\",\"doi\":\"10.1103/physrevd.111.035032\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a new realization of light Dirac neutrino mass and dark matter (DM) within the framework of a non-Abelian discrete flavor symmetry based on A</a:mi>4</a:mn></a:msub></a:math> group. In addition to <c:math xmlns:c=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><c:msub><c:mi>A</c:mi><c:mn>4</c:mn></c:msub></c:math>, we also consider a <e:math xmlns:e=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><e:msub><e:mi>Z</e:mi><e:mn>2</e:mn></e:msub></e:math> and an unbroken global lepton number symmetry <g:math xmlns:g=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><g:mi>U</g:mi><g:mo stretchy=\\\"false\\\">(</g:mo><g:mn>1</g:mn><g:msub><g:mo stretchy=\\\"false\\\">)</g:mo><g:mi>L</g:mi></g:msub></g:math> to keep unwanted terms away while guaranteeing the Dirac nature of light neutrinos. The field content, their transformations, and flavon vacuum alignments are chosen in such a way that the type-I Dirac seesaw generates only one light Dirac neutrino mass while the other two masses arise from scotogenic contributions at one-loop. This leads to the Dirac scoto-seesaw framework, a generalization of the widely studied scoto-seesaw model to Dirac neutrinos. The symmetry breaking of <k:math xmlns:k=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><k:msub><k:mi>A</k:mi><k:mn>4</k:mn></k:msub></k:math> leaves a remnant <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><m:msub><m:mi mathvariant=\\\"script\\\">Z</m:mi><m:mn>2</m:mn></m:msub></m:math> symmetry responsible for stabilizing DM. Dirac nature of light neutrinos introduces additional relativistic degrees of freedom <p:math xmlns:p=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><p:mi mathvariant=\\\"normal\\\">Δ</p:mi><p:msub><p:mi>N</p:mi><p:mi>eff</p:mi></p:msub></p:math> within reach of cosmic microwave background experiments. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>\",\"PeriodicalId\":20167,\"journal\":{\"name\":\"Physical Review D\",\"volume\":\"35 1\",\"pages\":\"\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2025-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review D\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevd.111.035032\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review D","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevd.111.035032","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
We propose a new realization of light Dirac neutrino mass and dark matter (DM) within the framework of a non-Abelian discrete flavor symmetry based on A4 group. In addition to A4, we also consider a Z2 and an unbroken global lepton number symmetry U(1)L to keep unwanted terms away while guaranteeing the Dirac nature of light neutrinos. The field content, their transformations, and flavon vacuum alignments are chosen in such a way that the type-I Dirac seesaw generates only one light Dirac neutrino mass while the other two masses arise from scotogenic contributions at one-loop. This leads to the Dirac scoto-seesaw framework, a generalization of the widely studied scoto-seesaw model to Dirac neutrinos. The symmetry breaking of A4 leaves a remnant Z2 symmetry responsible for stabilizing DM. Dirac nature of light neutrinos introduces additional relativistic degrees of freedom ΔNeff within reach of cosmic microwave background experiments. Published by the American Physical Society2025
期刊介绍:
Physical Review D (PRD) is a leading journal in elementary particle physics, field theory, gravitation, and cosmology and is one of the top-cited journals in high-energy physics.
PRD covers experimental and theoretical results in all aspects of particle physics, field theory, gravitation and cosmology, including:
Particle physics experiments,
Electroweak interactions,
Strong interactions,
Lattice field theories, lattice QCD,
Beyond the standard model physics,
Phenomenological aspects of field theory, general methods,
Gravity, cosmology, cosmic rays,
Astrophysics and astroparticle physics,
General relativity,
Formal aspects of field theory, field theory in curved space,
String theory, quantum gravity, gauge/gravity duality.