Eugenia De Remigis;Fehmi M. Dikbaş;Michele Ibrahimi;Francesco Bianciardi;Elisa L. Petrocelli;Elisa Roberti;Veronica Iacovacci;Stefano Palagi
{"title":"细胞启发的超变形磁性微型机器人在限制性环境中的渗透","authors":"Eugenia De Remigis;Fehmi M. Dikbaş;Michele Ibrahimi;Francesco Bianciardi;Elisa L. Petrocelli;Elisa Roberti;Veronica Iacovacci;Stefano Palagi","doi":"10.1109/TMRB.2024.3503898","DOIUrl":null,"url":null,"abstract":"Microscale robotics represents a promising future for minimally invasive medicine. However, one of the biggest challenges of microrobots moving through the human body is represented by the complex 3D structure of biological lumina and tissues, which obstructs the navigation of micron-sized devices. Here, we fabricate ultra-deformable magnetic microrobots, consisting of ferrofluid-loaded lipid vesicles, and we magnetically pull them through chambers that exert upon them a gradually more forceful confinement. We thus analyze their capability to face interstices comparable to or smaller than their characteristic size and their consequent behavior in terms of stability, velocity, and deformation. The results show that the inherent compliance of these vesicle-based magnetic microrobots allows them to infiltrate successfully in interstices slightly smaller than their size. Further enhancement of their compliance and the development of specific control strategies may lead to microrobots able to move through interstices and traverse complex biological environments.","PeriodicalId":73318,"journal":{"name":"IEEE transactions on medical robotics and bionics","volume":"7 1","pages":"123-129"},"PeriodicalIF":3.4000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10768195","citationCount":"0","resultStr":"{\"title\":\"Infiltration of Cell-Inspired Ultra-Deformable Magnetic Microrobots in Restrictive Environments\",\"authors\":\"Eugenia De Remigis;Fehmi M. Dikbaş;Michele Ibrahimi;Francesco Bianciardi;Elisa L. Petrocelli;Elisa Roberti;Veronica Iacovacci;Stefano Palagi\",\"doi\":\"10.1109/TMRB.2024.3503898\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Microscale robotics represents a promising future for minimally invasive medicine. However, one of the biggest challenges of microrobots moving through the human body is represented by the complex 3D structure of biological lumina and tissues, which obstructs the navigation of micron-sized devices. Here, we fabricate ultra-deformable magnetic microrobots, consisting of ferrofluid-loaded lipid vesicles, and we magnetically pull them through chambers that exert upon them a gradually more forceful confinement. We thus analyze their capability to face interstices comparable to or smaller than their characteristic size and their consequent behavior in terms of stability, velocity, and deformation. The results show that the inherent compliance of these vesicle-based magnetic microrobots allows them to infiltrate successfully in interstices slightly smaller than their size. Further enhancement of their compliance and the development of specific control strategies may lead to microrobots able to move through interstices and traverse complex biological environments.\",\"PeriodicalId\":73318,\"journal\":{\"name\":\"IEEE transactions on medical robotics and bionics\",\"volume\":\"7 1\",\"pages\":\"123-129\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10768195\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE transactions on medical robotics and bionics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10768195/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on medical robotics and bionics","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10768195/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Infiltration of Cell-Inspired Ultra-Deformable Magnetic Microrobots in Restrictive Environments
Microscale robotics represents a promising future for minimally invasive medicine. However, one of the biggest challenges of microrobots moving through the human body is represented by the complex 3D structure of biological lumina and tissues, which obstructs the navigation of micron-sized devices. Here, we fabricate ultra-deformable magnetic microrobots, consisting of ferrofluid-loaded lipid vesicles, and we magnetically pull them through chambers that exert upon them a gradually more forceful confinement. We thus analyze their capability to face interstices comparable to or smaller than their characteristic size and their consequent behavior in terms of stability, velocity, and deformation. The results show that the inherent compliance of these vesicle-based magnetic microrobots allows them to infiltrate successfully in interstices slightly smaller than their size. Further enhancement of their compliance and the development of specific control strategies may lead to microrobots able to move through interstices and traverse complex biological environments.