A. Michael West;Federico Tessari;Margaret Wang;Neville Hogan
{"title":"灵巧手部操作研究:基于协同作用的复杂性指数","authors":"A. Michael West;Federico Tessari;Margaret Wang;Neville Hogan","doi":"10.1109/TMRB.2025.3531006","DOIUrl":null,"url":null,"abstract":"In this work we tackle the question of how to analyze and objectively quantify the complexity of a manipulation task. The study investigates the kinematic behavior of the hand joints in three different manipulation tasks of growing complexity: reaching-to-grasp, tool use and piano playing. The collected data were processed to extract the kinematic synergies of the hand by means of singular value decomposition. A novel, unbiased metric to determine hand manipulation complexity was based on the cumulative variance accounted for. This Variance-Accounted-For Complexity Index (VAF-CI) reliably distinguished between different manipulation tasks. Moreover, an unsupervised learning method (k-means clustering) was able to use the index to accurately identify the 3 distinct manipulation tasks. These results may be leveraged to improve the control of biomimetic dexterous robots during manipulation tasks.","PeriodicalId":73318,"journal":{"name":"IEEE transactions on medical robotics and bionics","volume":"7 1","pages":"156-163"},"PeriodicalIF":3.4000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Study of Dexterous Hand Manipulation: A Synergy-Based Complexity Index\",\"authors\":\"A. Michael West;Federico Tessari;Margaret Wang;Neville Hogan\",\"doi\":\"10.1109/TMRB.2025.3531006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work we tackle the question of how to analyze and objectively quantify the complexity of a manipulation task. The study investigates the kinematic behavior of the hand joints in three different manipulation tasks of growing complexity: reaching-to-grasp, tool use and piano playing. The collected data were processed to extract the kinematic synergies of the hand by means of singular value decomposition. A novel, unbiased metric to determine hand manipulation complexity was based on the cumulative variance accounted for. This Variance-Accounted-For Complexity Index (VAF-CI) reliably distinguished between different manipulation tasks. Moreover, an unsupervised learning method (k-means clustering) was able to use the index to accurately identify the 3 distinct manipulation tasks. These results may be leveraged to improve the control of biomimetic dexterous robots during manipulation tasks.\",\"PeriodicalId\":73318,\"journal\":{\"name\":\"IEEE transactions on medical robotics and bionics\",\"volume\":\"7 1\",\"pages\":\"156-163\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-01-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE transactions on medical robotics and bionics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10844894/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on medical robotics and bionics","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10844894/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
The Study of Dexterous Hand Manipulation: A Synergy-Based Complexity Index
In this work we tackle the question of how to analyze and objectively quantify the complexity of a manipulation task. The study investigates the kinematic behavior of the hand joints in three different manipulation tasks of growing complexity: reaching-to-grasp, tool use and piano playing. The collected data were processed to extract the kinematic synergies of the hand by means of singular value decomposition. A novel, unbiased metric to determine hand manipulation complexity was based on the cumulative variance accounted for. This Variance-Accounted-For Complexity Index (VAF-CI) reliably distinguished between different manipulation tasks. Moreover, an unsupervised learning method (k-means clustering) was able to use the index to accurately identify the 3 distinct manipulation tasks. These results may be leveraged to improve the control of biomimetic dexterous robots during manipulation tasks.