灵巧手部操作研究:基于协同作用的复杂性指数

IF 3.4 Q2 ENGINEERING, BIOMEDICAL IEEE transactions on medical robotics and bionics Pub Date : 2025-01-17 DOI:10.1109/TMRB.2025.3531006
A. Michael West;Federico Tessari;Margaret Wang;Neville Hogan
{"title":"灵巧手部操作研究:基于协同作用的复杂性指数","authors":"A. Michael West;Federico Tessari;Margaret Wang;Neville Hogan","doi":"10.1109/TMRB.2025.3531006","DOIUrl":null,"url":null,"abstract":"In this work we tackle the question of how to analyze and objectively quantify the complexity of a manipulation task. The study investigates the kinematic behavior of the hand joints in three different manipulation tasks of growing complexity: reaching-to-grasp, tool use and piano playing. The collected data were processed to extract the kinematic synergies of the hand by means of singular value decomposition. A novel, unbiased metric to determine hand manipulation complexity was based on the cumulative variance accounted for. This Variance-Accounted-For Complexity Index (VAF-CI) reliably distinguished between different manipulation tasks. Moreover, an unsupervised learning method (k-means clustering) was able to use the index to accurately identify the 3 distinct manipulation tasks. These results may be leveraged to improve the control of biomimetic dexterous robots during manipulation tasks.","PeriodicalId":73318,"journal":{"name":"IEEE transactions on medical robotics and bionics","volume":"7 1","pages":"156-163"},"PeriodicalIF":3.4000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Study of Dexterous Hand Manipulation: A Synergy-Based Complexity Index\",\"authors\":\"A. Michael West;Federico Tessari;Margaret Wang;Neville Hogan\",\"doi\":\"10.1109/TMRB.2025.3531006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work we tackle the question of how to analyze and objectively quantify the complexity of a manipulation task. The study investigates the kinematic behavior of the hand joints in three different manipulation tasks of growing complexity: reaching-to-grasp, tool use and piano playing. The collected data were processed to extract the kinematic synergies of the hand by means of singular value decomposition. A novel, unbiased metric to determine hand manipulation complexity was based on the cumulative variance accounted for. This Variance-Accounted-For Complexity Index (VAF-CI) reliably distinguished between different manipulation tasks. Moreover, an unsupervised learning method (k-means clustering) was able to use the index to accurately identify the 3 distinct manipulation tasks. These results may be leveraged to improve the control of biomimetic dexterous robots during manipulation tasks.\",\"PeriodicalId\":73318,\"journal\":{\"name\":\"IEEE transactions on medical robotics and bionics\",\"volume\":\"7 1\",\"pages\":\"156-163\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-01-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE transactions on medical robotics and bionics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10844894/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on medical robotics and bionics","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10844894/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The Study of Dexterous Hand Manipulation: A Synergy-Based Complexity Index
In this work we tackle the question of how to analyze and objectively quantify the complexity of a manipulation task. The study investigates the kinematic behavior of the hand joints in three different manipulation tasks of growing complexity: reaching-to-grasp, tool use and piano playing. The collected data were processed to extract the kinematic synergies of the hand by means of singular value decomposition. A novel, unbiased metric to determine hand manipulation complexity was based on the cumulative variance accounted for. This Variance-Accounted-For Complexity Index (VAF-CI) reliably distinguished between different manipulation tasks. Moreover, an unsupervised learning method (k-means clustering) was able to use the index to accurately identify the 3 distinct manipulation tasks. These results may be leveraged to improve the control of biomimetic dexterous robots during manipulation tasks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.80
自引率
0.00%
发文量
0
期刊最新文献
Table of Contents IEEE Transactions on Medical Robotics and Bionics Information for Authors IEEE Transactions on Medical Robotics and Bionics Society Information Guest Editorial BioRob2024 IEEE Transactions on Medical Robotics and Bionics Publication Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1