Eduardo Monteiro , Anderson S. Cabral , Viviana Morillo , Daniel Acosta-Avalos , Ulysses Lins , Fernanda Abreu
{"title":"Three-dimensional reconstruction of Magnetofaba australis strain IT-1: Magnetosome chain position with respect to flagella","authors":"Eduardo Monteiro , Anderson S. Cabral , Viviana Morillo , Daniel Acosta-Avalos , Ulysses Lins , Fernanda Abreu","doi":"10.1016/j.jsb.2025.108181","DOIUrl":null,"url":null,"abstract":"<div><div>Magnetotactic bacteria (MTB) are a broad and diverse group of Gram-negative prokaryotes that biomineralize magnetosomes, organelles composed of a magnetic nanocrystal of magnetite (Fe<sub>3</sub>O<sub>4</sub>) or greigite (Fe<sub>3</sub>S<sub>4</sub>) and enveloped by a biological membrane. Magnetosomes are arranged in one or more chains intracellularly, which impart a magnetic moment to the cell. These structures permit a passive orientation of the MTB with the geomagnetic field lines (GML), which, when associated with swimming propelled by flagella, originate a phenomenon called magneto-aerotaxis, an important life strategy in a chemical stratified environment. There is a classical model based on elongated cells as vibrios and rods that tries to explain the magneto-aerotaxis. Still, this model raises questions when applied to other morphologies other than elongated cells. Here, we observe the spatial disposition of magnetosomes, motility behavior, and influence of magneto-aerotaxis in <em>Magnetofaba australis</em> strain IT-1, an MTB that achieves high swimming speeds and has some peculiarity in its motility. The three-dimensional reconstruction showed that <em>Mf. australis</em> strain IT-1′s magnetosome chain is misaligned with the swimming axis, which makes it impossible to use the classical model to explain magneto-aerotaxis in this MTB. Despite this, <em>Mf. australis</em> strain IT-1 was capable of swimming aligned to the GML. Also, this work studied the influence of the magnetosome and magneto-aerotaxis between populations of <em>Mf. australis</em> strain IT-1 with and without magnetosomes. Our results indicated that the magnetosome presence not only positively influences the movement in <em>Mf.<!--> <!-->australis</em> strain IT-1 but also can positively impact population growth in these MTB.</div></div>","PeriodicalId":17074,"journal":{"name":"Journal of structural biology","volume":"217 2","pages":"Article 108181"},"PeriodicalIF":3.0000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of structural biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1047847725000164","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Three-dimensional reconstruction of Magnetofaba australis strain IT-1: Magnetosome chain position with respect to flagella
Magnetotactic bacteria (MTB) are a broad and diverse group of Gram-negative prokaryotes that biomineralize magnetosomes, organelles composed of a magnetic nanocrystal of magnetite (Fe3O4) or greigite (Fe3S4) and enveloped by a biological membrane. Magnetosomes are arranged in one or more chains intracellularly, which impart a magnetic moment to the cell. These structures permit a passive orientation of the MTB with the geomagnetic field lines (GML), which, when associated with swimming propelled by flagella, originate a phenomenon called magneto-aerotaxis, an important life strategy in a chemical stratified environment. There is a classical model based on elongated cells as vibrios and rods that tries to explain the magneto-aerotaxis. Still, this model raises questions when applied to other morphologies other than elongated cells. Here, we observe the spatial disposition of magnetosomes, motility behavior, and influence of magneto-aerotaxis in Magnetofaba australis strain IT-1, an MTB that achieves high swimming speeds and has some peculiarity in its motility. The three-dimensional reconstruction showed that Mf. australis strain IT-1′s magnetosome chain is misaligned with the swimming axis, which makes it impossible to use the classical model to explain magneto-aerotaxis in this MTB. Despite this, Mf. australis strain IT-1 was capable of swimming aligned to the GML. Also, this work studied the influence of the magnetosome and magneto-aerotaxis between populations of Mf. australis strain IT-1 with and without magnetosomes. Our results indicated that the magnetosome presence not only positively influences the movement in Mf. australis strain IT-1 but also can positively impact population growth in these MTB.
期刊介绍:
Journal of Structural Biology (JSB) has an open access mirror journal, the Journal of Structural Biology: X (JSBX), sharing the same aims and scope, editorial team, submission system and rigorous peer review. Since both journals share the same editorial system, you may submit your manuscript via either journal homepage. You will be prompted during submission (and revision) to choose in which to publish your article. The editors and reviewers are not aware of the choice you made until the article has been published online. JSB and JSBX publish papers dealing with the structural analysis of living material at every level of organization by all methods that lead to an understanding of biological function in terms of molecular and supermolecular structure.
Techniques covered include:
• Light microscopy including confocal microscopy
• All types of electron microscopy
• X-ray diffraction
• Nuclear magnetic resonance
• Scanning force microscopy, scanning probe microscopy, and tunneling microscopy
• Digital image processing
• Computational insights into structure