同质铋掺杂剂调节氧化铈结构,通过双电子氧还原促进过氧化氢电合成

IF 6.1 1区 化学 Q1 CHEMISTRY, INORGANIC & NUCLEAR Inorganic Chemistry Frontiers Pub Date : 2025-03-03 DOI:10.1039/d5qi00075k
QiYing Yang, Changhui Sun, Lanju Sun, Hangning Liu, Linghao Su, Chuanli Ma, Jie Wang, Liangyu Gong, Zhenhua Yan
{"title":"同质铋掺杂剂调节氧化铈结构,通过双电子氧还原促进过氧化氢电合成","authors":"QiYing Yang, Changhui Sun, Lanju Sun, Hangning Liu, Linghao Su, Chuanli Ma, Jie Wang, Liangyu Gong, Zhenhua Yan","doi":"10.1039/d5qi00075k","DOIUrl":null,"url":null,"abstract":"The electrochemical synthesis of hydrogen peroxide (H₂O₂) through the two-electron oxygen reduction reaction (2e-ORR) offers a promising alternative to the traditional anthraquinone process. However, this method often suffers from sluggish kinetics. In this study, we introduce a novel bismuth-doped cerium oxide (Bi-CeO₂) composite, featuring hollow nanospheres and triangular nanoplate structures with highly dispersed Bi dopants on the CeO₂ matrix. Notably, the morphology of the Bi-CeO₂ can be dynamically tuned between spheres and plates by adjusting the amounts of Bi dopants. This innovative 1%-Bi-CeO₂ catalyst exhibits exceptional H₂O₂ selectivity at 62.3% and significantly enhanced H₂O₂ yield, reaching 1.16 mol gcat -1 h -1 at 0.1 V with a high Faraday efficiency of 56.0%. Density functional theory (DFT) calculations reveal that Bi dopants effectively lower the free energy barrier for *OOH intermediate formation, thereby accelerating H₂O₂ production. Additionally, when integrated into a dual-cathode system, the 1%-Bi-CeO₂ demonstrates superior performance in removing organic dyes such as rhodamine B (RhB). This work offers a groundbreaking approach to designing high-efficiency heteroatom-doped catalysts for 2e-ORR, paving the way for more effective electrochemical systems..","PeriodicalId":79,"journal":{"name":"Inorganic Chemistry Frontiers","volume":"39 1","pages":""},"PeriodicalIF":6.1000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Homogeneous Bismuth Dopants Regulate Cerium Oxide Structure to Boost Hydrogen Peroxide Electrosynthesis via Two-Electron Oxygen Reduction\",\"authors\":\"QiYing Yang, Changhui Sun, Lanju Sun, Hangning Liu, Linghao Su, Chuanli Ma, Jie Wang, Liangyu Gong, Zhenhua Yan\",\"doi\":\"10.1039/d5qi00075k\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The electrochemical synthesis of hydrogen peroxide (H₂O₂) through the two-electron oxygen reduction reaction (2e-ORR) offers a promising alternative to the traditional anthraquinone process. However, this method often suffers from sluggish kinetics. In this study, we introduce a novel bismuth-doped cerium oxide (Bi-CeO₂) composite, featuring hollow nanospheres and triangular nanoplate structures with highly dispersed Bi dopants on the CeO₂ matrix. Notably, the morphology of the Bi-CeO₂ can be dynamically tuned between spheres and plates by adjusting the amounts of Bi dopants. This innovative 1%-Bi-CeO₂ catalyst exhibits exceptional H₂O₂ selectivity at 62.3% and significantly enhanced H₂O₂ yield, reaching 1.16 mol gcat -1 h -1 at 0.1 V with a high Faraday efficiency of 56.0%. Density functional theory (DFT) calculations reveal that Bi dopants effectively lower the free energy barrier for *OOH intermediate formation, thereby accelerating H₂O₂ production. Additionally, when integrated into a dual-cathode system, the 1%-Bi-CeO₂ demonstrates superior performance in removing organic dyes such as rhodamine B (RhB). This work offers a groundbreaking approach to designing high-efficiency heteroatom-doped catalysts for 2e-ORR, paving the way for more effective electrochemical systems..\",\"PeriodicalId\":79,\"journal\":{\"name\":\"Inorganic Chemistry Frontiers\",\"volume\":\"39 1\",\"pages\":\"\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2025-03-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Inorganic Chemistry Frontiers\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1039/d5qi00075k\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inorganic Chemistry Frontiers","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d5qi00075k","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Homogeneous Bismuth Dopants Regulate Cerium Oxide Structure to Boost Hydrogen Peroxide Electrosynthesis via Two-Electron Oxygen Reduction
The electrochemical synthesis of hydrogen peroxide (H₂O₂) through the two-electron oxygen reduction reaction (2e-ORR) offers a promising alternative to the traditional anthraquinone process. However, this method often suffers from sluggish kinetics. In this study, we introduce a novel bismuth-doped cerium oxide (Bi-CeO₂) composite, featuring hollow nanospheres and triangular nanoplate structures with highly dispersed Bi dopants on the CeO₂ matrix. Notably, the morphology of the Bi-CeO₂ can be dynamically tuned between spheres and plates by adjusting the amounts of Bi dopants. This innovative 1%-Bi-CeO₂ catalyst exhibits exceptional H₂O₂ selectivity at 62.3% and significantly enhanced H₂O₂ yield, reaching 1.16 mol gcat -1 h -1 at 0.1 V with a high Faraday efficiency of 56.0%. Density functional theory (DFT) calculations reveal that Bi dopants effectively lower the free energy barrier for *OOH intermediate formation, thereby accelerating H₂O₂ production. Additionally, when integrated into a dual-cathode system, the 1%-Bi-CeO₂ demonstrates superior performance in removing organic dyes such as rhodamine B (RhB). This work offers a groundbreaking approach to designing high-efficiency heteroatom-doped catalysts for 2e-ORR, paving the way for more effective electrochemical systems..
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Inorganic Chemistry Frontiers
Inorganic Chemistry Frontiers CHEMISTRY, INORGANIC & NUCLEAR-
CiteScore
10.40
自引率
7.10%
发文量
587
审稿时长
1.2 months
期刊介绍: The international, high quality journal for interdisciplinary research between inorganic chemistry and related subjects
期刊最新文献
Optimizing the electronic structure of copper and cobalt dual-sites for efficient electrosynthesis of urea Air-stable pentagonal-bipyramidal dysprosium(III) single-molecule magnets with sulfur-containing macrocycle equatorial ligand Z-scheme heterojunction ZnCdS/P2W12Fe9AO nanocomposite based on an adsorption-photoreduction synergistic strategy for uranium reduction Long-lasting far-UVC persistent luminescence for solar-blind optical tagging Excitation-Dependent Multicolor Luminescence with Tunable Afterglow from Te4+-doped (CytH)2SnCl6 for Dynamic Anticounterfeiting
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1