Michael R. Bull , Rachel C. Huber , Ping Yu , Tanner J Finney , Noah Felvey , Paul Chow , Yuming Xiao , Tonya L. Kuhl , Erik B. Watkins
{"title":"Probing the high-pressure densification of amorphous silica nanomaterials using SBA-15: An investigation into the paradoxical nature of the first sharp diffraction peak","authors":"Michael R. Bull , Rachel C. Huber , Ping Yu , Tanner J Finney , Noah Felvey , Paul Chow , Yuming Xiao , Tonya L. Kuhl , Erik B. Watkins","doi":"10.1016/j.jnoncrysol.2025.123448","DOIUrl":null,"url":null,"abstract":"<div><div>The densification and X-ray scattering of mesoporous silica (SBA-15) were measured simultaneously under gigapascal (GPa) pressures. The results are compared to previous work on amorphous silica (<em>a</em>SiO<sub>2</sub>) and demonstrate the feasibility of measuring the densification of <em>a</em>SiO<sub>2</sub> nanomaterials with small angle X-ray scattering (SAXS) in-situ in a diamond anvil cell. Compared to fused silica, the position of the SBA-15 first sharp diffraction peak (FSDP) is 7 times more sensitive to pressure and has a transition in its pressure dependance at a lower pressure (∼2 GPa vs. ∼13 GPa). SBA-15 has two densification regimes, low-density amorphous and high-density amorphous, which have equations of state comparable to low-density amorphous and high-density amorphous fused silica. The transition between these two regimes occurs at a lower pressure than for fused silica (∼1.5 GPa vs. ∼13 GPa). The results suggest that there is no direct relationship between the FSDP position and the <em>a</em>SiO<sub>2</sub> density during compression.</div></div>","PeriodicalId":16461,"journal":{"name":"Journal of Non-crystalline Solids","volume":"656 ","pages":"Article 123448"},"PeriodicalIF":3.2000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Non-crystalline Solids","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002230932500064X","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
Probing the high-pressure densification of amorphous silica nanomaterials using SBA-15: An investigation into the paradoxical nature of the first sharp diffraction peak
The densification and X-ray scattering of mesoporous silica (SBA-15) were measured simultaneously under gigapascal (GPa) pressures. The results are compared to previous work on amorphous silica (aSiO2) and demonstrate the feasibility of measuring the densification of aSiO2 nanomaterials with small angle X-ray scattering (SAXS) in-situ in a diamond anvil cell. Compared to fused silica, the position of the SBA-15 first sharp diffraction peak (FSDP) is 7 times more sensitive to pressure and has a transition in its pressure dependance at a lower pressure (∼2 GPa vs. ∼13 GPa). SBA-15 has two densification regimes, low-density amorphous and high-density amorphous, which have equations of state comparable to low-density amorphous and high-density amorphous fused silica. The transition between these two regimes occurs at a lower pressure than for fused silica (∼1.5 GPa vs. ∼13 GPa). The results suggest that there is no direct relationship between the FSDP position and the aSiO2 density during compression.
期刊介绍:
The Journal of Non-Crystalline Solids publishes review articles, research papers, and Letters to the Editor on amorphous and glassy materials, including inorganic, organic, polymeric, hybrid and metallic systems. Papers on partially glassy materials, such as glass-ceramics and glass-matrix composites, and papers involving the liquid state are also included in so far as the properties of the liquid are relevant for the formation of the solid.
In all cases the papers must demonstrate both novelty and importance to the field, by way of significant advances in understanding or application of non-crystalline solids; in the case of Letters, a compelling case must also be made for expedited handling.