Qunou Jiang , Lingyuan Yan , Huimin Wang , Xiaoqin Dai , Shengwang Meng , Xiaoli Fu , Fengting Yang , Zeqing Ma , Wenjiao Shi , Wenjun Lv , Yuxin Wang , Decai Gao
{"title":"添加营养物质对微生物碳利用效率影响较小","authors":"Qunou Jiang , Lingyuan Yan , Huimin Wang , Xiaoqin Dai , Shengwang Meng , Xiaoli Fu , Fengting Yang , Zeqing Ma , Wenjiao Shi , Wenjun Lv , Yuxin Wang , Decai Gao","doi":"10.1016/j.agee.2025.109582","DOIUrl":null,"url":null,"abstract":"<div><div>Soil nutrient and organic matter contents play a pivotal role in shaping microbial carbon use efficiency (CUE) by modulating microbial catabolic and anabolic processes, thereby influencing carbon (C) dynamics in terrestrial ecosystems. However, a comprehensive understanding of how organic matter, nitrogen (N), phosphorus (P) additions, as well as their interactions affect soil microbial CUE remains unclear. Here, we conducted a meta-analysis comprising 531 observations from 153 published studies to investigate the effects of organic matter, N, and P additions on microbial growth, respiration, and CUE. Our results revealed that N addition significantly decreased soil respiration by 6 %, without affecting microbial growth or CUE. P addition showed no significant effects on microbial physiology. Combined N and P additions significantly enhanced microbial growth and respiration by 9 % and 16 %, respectively, but did not influence microbial CUE. Organic matter addition significantly promoted microbial growth, respiration, and CUE by 37 %, 30 %, and 9 %, respectively. The impacts of N addition on microbial CUE varied across ecosystem types and forms of N applied. Soil microbial responses were more pronounced at lower N addition rates and shorter durations but diminished at higher N addition rates and longer durations. Furthermore, the impacts of inorganic nutrients and organic matter additions on microbial CUE strongly depended on soil properties. These findings provide critical insights into microbial physiological responses to nutrient additions and offer a robust foundation for improving Earth System Models, thereby enhancing predictions of C cycling under scenarios of increased nutrient availability.</div></div>","PeriodicalId":7512,"journal":{"name":"Agriculture, Ecosystems & Environment","volume":"385 ","pages":"Article 109582"},"PeriodicalIF":6.0000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nutrient additions have minor impact on microbial carbon use efficiency\",\"authors\":\"Qunou Jiang , Lingyuan Yan , Huimin Wang , Xiaoqin Dai , Shengwang Meng , Xiaoli Fu , Fengting Yang , Zeqing Ma , Wenjiao Shi , Wenjun Lv , Yuxin Wang , Decai Gao\",\"doi\":\"10.1016/j.agee.2025.109582\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Soil nutrient and organic matter contents play a pivotal role in shaping microbial carbon use efficiency (CUE) by modulating microbial catabolic and anabolic processes, thereby influencing carbon (C) dynamics in terrestrial ecosystems. However, a comprehensive understanding of how organic matter, nitrogen (N), phosphorus (P) additions, as well as their interactions affect soil microbial CUE remains unclear. Here, we conducted a meta-analysis comprising 531 observations from 153 published studies to investigate the effects of organic matter, N, and P additions on microbial growth, respiration, and CUE. Our results revealed that N addition significantly decreased soil respiration by 6 %, without affecting microbial growth or CUE. P addition showed no significant effects on microbial physiology. Combined N and P additions significantly enhanced microbial growth and respiration by 9 % and 16 %, respectively, but did not influence microbial CUE. Organic matter addition significantly promoted microbial growth, respiration, and CUE by 37 %, 30 %, and 9 %, respectively. The impacts of N addition on microbial CUE varied across ecosystem types and forms of N applied. Soil microbial responses were more pronounced at lower N addition rates and shorter durations but diminished at higher N addition rates and longer durations. Furthermore, the impacts of inorganic nutrients and organic matter additions on microbial CUE strongly depended on soil properties. These findings provide critical insights into microbial physiological responses to nutrient additions and offer a robust foundation for improving Earth System Models, thereby enhancing predictions of C cycling under scenarios of increased nutrient availability.</div></div>\",\"PeriodicalId\":7512,\"journal\":{\"name\":\"Agriculture, Ecosystems & Environment\",\"volume\":\"385 \",\"pages\":\"Article 109582\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2025-03-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Agriculture, Ecosystems & Environment\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167880925001148\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Agriculture, Ecosystems & Environment","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167880925001148","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
Nutrient additions have minor impact on microbial carbon use efficiency
Soil nutrient and organic matter contents play a pivotal role in shaping microbial carbon use efficiency (CUE) by modulating microbial catabolic and anabolic processes, thereby influencing carbon (C) dynamics in terrestrial ecosystems. However, a comprehensive understanding of how organic matter, nitrogen (N), phosphorus (P) additions, as well as their interactions affect soil microbial CUE remains unclear. Here, we conducted a meta-analysis comprising 531 observations from 153 published studies to investigate the effects of organic matter, N, and P additions on microbial growth, respiration, and CUE. Our results revealed that N addition significantly decreased soil respiration by 6 %, without affecting microbial growth or CUE. P addition showed no significant effects on microbial physiology. Combined N and P additions significantly enhanced microbial growth and respiration by 9 % and 16 %, respectively, but did not influence microbial CUE. Organic matter addition significantly promoted microbial growth, respiration, and CUE by 37 %, 30 %, and 9 %, respectively. The impacts of N addition on microbial CUE varied across ecosystem types and forms of N applied. Soil microbial responses were more pronounced at lower N addition rates and shorter durations but diminished at higher N addition rates and longer durations. Furthermore, the impacts of inorganic nutrients and organic matter additions on microbial CUE strongly depended on soil properties. These findings provide critical insights into microbial physiological responses to nutrient additions and offer a robust foundation for improving Earth System Models, thereby enhancing predictions of C cycling under scenarios of increased nutrient availability.
期刊介绍:
Agriculture, Ecosystems and Environment publishes scientific articles dealing with the interface between agroecosystems and the natural environment, specifically how agriculture influences the environment and how changes in that environment impact agroecosystems. Preference is given to papers from experimental and observational research at the field, system or landscape level, from studies that enhance our understanding of processes using data-based biophysical modelling, and papers that bridge scientific disciplines and integrate knowledge. All papers should be placed in an international or wide comparative context.