通过深度神经网络从模拟静态心肌计算机断层扫描灌注合成心肌血流的可行性探索。

IF 1.7 3区 医学 Q3 INSTRUMENTS & INSTRUMENTATION Journal of X-Ray Science and Technology Pub Date : 2025-03-03 DOI:10.1177/08953996251317412
Jun Dong, Runjianya Ling, Zhenxing Huang, Yidan Xu, Haiyan Wang, Zixiang Chen, Meiyong Huang, Vladimir Stankovic, Jiayin Zhang, Zhanli Hu
{"title":"通过深度神经网络从模拟静态心肌计算机断层扫描灌注合成心肌血流的可行性探索。","authors":"Jun Dong, Runjianya Ling, Zhenxing Huang, Yidan Xu, Haiyan Wang, Zixiang Chen, Meiyong Huang, Vladimir Stankovic, Jiayin Zhang, Zhanli Hu","doi":"10.1177/08953996251317412","DOIUrl":null,"url":null,"abstract":"<p><strong>Background:: </strong>Myocardial blood flow (MBF) provides important diagnostic information for myocardial ischemia. However, dynamic computed tomography perfusion (CTP) needed for MBF involves multiple exposures, leading to high radiation doses.</p><p><strong>Objectives:: </strong>This study investigated synthesizing MBF from simulated static myocardial CTP to explore dose reduction potential, bypassing the traditional dynamic input function.</p><p><strong>Methods:: </strong>The study included 253 subjects with intermediate-to-high pretest probabilities of obstructive coronary artery disease (CAD). MBF was reconstructed from dynamic myocardial CTP. A deep neural network (DNN) converted simulated static CTP into synthetic MBF. Beyond the usual image quality evaluation, the synthetic MBF was segmented and a clinical functional assessment was conducted, with quantitative analysis for consistency and correlation.</p><p><strong>Results:: </strong>Synthetic MBF closely matched the referenced MBF, with an average structure similarity (SSIM) of 0.87. ROC analysis of ischemic segments showed an area under curve (AUC) of 0.915 for synthetic MBF. This method can theoretically reduce the radiation dose for MBF significantly, provided satisfactory static CTP is obtained, reducing reliance on high time resolution of dynamic CTP.</p><p><strong>Conclusions:: </strong>The proposed method is feasible, with satisfactory clinical functionality of synthetic MBF. Further investigation and validation are needed to confirm actual dose reduction in clinical settings.</p>","PeriodicalId":49948,"journal":{"name":"Journal of X-Ray Science and Technology","volume":" ","pages":"8953996251317412"},"PeriodicalIF":1.7000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Feasibility exploration of myocardial blood flow synthesis from a simulated static myocardial computed tomography perfusion via a deep neural network.\",\"authors\":\"Jun Dong, Runjianya Ling, Zhenxing Huang, Yidan Xu, Haiyan Wang, Zixiang Chen, Meiyong Huang, Vladimir Stankovic, Jiayin Zhang, Zhanli Hu\",\"doi\":\"10.1177/08953996251317412\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background:: </strong>Myocardial blood flow (MBF) provides important diagnostic information for myocardial ischemia. However, dynamic computed tomography perfusion (CTP) needed for MBF involves multiple exposures, leading to high radiation doses.</p><p><strong>Objectives:: </strong>This study investigated synthesizing MBF from simulated static myocardial CTP to explore dose reduction potential, bypassing the traditional dynamic input function.</p><p><strong>Methods:: </strong>The study included 253 subjects with intermediate-to-high pretest probabilities of obstructive coronary artery disease (CAD). MBF was reconstructed from dynamic myocardial CTP. A deep neural network (DNN) converted simulated static CTP into synthetic MBF. Beyond the usual image quality evaluation, the synthetic MBF was segmented and a clinical functional assessment was conducted, with quantitative analysis for consistency and correlation.</p><p><strong>Results:: </strong>Synthetic MBF closely matched the referenced MBF, with an average structure similarity (SSIM) of 0.87. ROC analysis of ischemic segments showed an area under curve (AUC) of 0.915 for synthetic MBF. This method can theoretically reduce the radiation dose for MBF significantly, provided satisfactory static CTP is obtained, reducing reliance on high time resolution of dynamic CTP.</p><p><strong>Conclusions:: </strong>The proposed method is feasible, with satisfactory clinical functionality of synthetic MBF. Further investigation and validation are needed to confirm actual dose reduction in clinical settings.</p>\",\"PeriodicalId\":49948,\"journal\":{\"name\":\"Journal of X-Ray Science and Technology\",\"volume\":\" \",\"pages\":\"8953996251317412\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2025-03-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of X-Ray Science and Technology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1177/08953996251317412\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"INSTRUMENTS & INSTRUMENTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of X-Ray Science and Technology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/08953996251317412","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Feasibility exploration of myocardial blood flow synthesis from a simulated static myocardial computed tomography perfusion via a deep neural network.

Background:: Myocardial blood flow (MBF) provides important diagnostic information for myocardial ischemia. However, dynamic computed tomography perfusion (CTP) needed for MBF involves multiple exposures, leading to high radiation doses.

Objectives:: This study investigated synthesizing MBF from simulated static myocardial CTP to explore dose reduction potential, bypassing the traditional dynamic input function.

Methods:: The study included 253 subjects with intermediate-to-high pretest probabilities of obstructive coronary artery disease (CAD). MBF was reconstructed from dynamic myocardial CTP. A deep neural network (DNN) converted simulated static CTP into synthetic MBF. Beyond the usual image quality evaluation, the synthetic MBF was segmented and a clinical functional assessment was conducted, with quantitative analysis for consistency and correlation.

Results:: Synthetic MBF closely matched the referenced MBF, with an average structure similarity (SSIM) of 0.87. ROC analysis of ischemic segments showed an area under curve (AUC) of 0.915 for synthetic MBF. This method can theoretically reduce the radiation dose for MBF significantly, provided satisfactory static CTP is obtained, reducing reliance on high time resolution of dynamic CTP.

Conclusions:: The proposed method is feasible, with satisfactory clinical functionality of synthetic MBF. Further investigation and validation are needed to confirm actual dose reduction in clinical settings.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.90
自引率
23.30%
发文量
150
审稿时长
3 months
期刊介绍: Research areas within the scope of the journal include: Interaction of x-rays with matter: x-ray phenomena, biological effects of radiation, radiation safety and optical constants X-ray sources: x-rays from synchrotrons, x-ray lasers, plasmas, and other sources, conventional or unconventional Optical elements: grazing incidence optics, multilayer mirrors, zone plates, gratings, other diffraction optics Optical instruments: interferometers, spectrometers, microscopes, telescopes, microprobes
期刊最新文献
Feasibility exploration of myocardial blood flow synthesis from a simulated static myocardial computed tomography perfusion via a deep neural network. KBA-PDNet: A primal-dual unrolling network with kernel basis attention for low-dose CT reconstruction. Comparative analysis of machine learning and deep learning algorithms for knee arthritis detection using YOLOv8 models. A deep learning detection method for pancreatic cystic neoplasm based on Mamba architecture. A novel detail-enhanced wavelet domain feature compensation network for sparse-view X-ray computed laminography.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1