KBA-PDNet:用于低剂量 CT 重构的具有核基关注度的基元-双展开网络。

IF 1.7 3区 医学 Q3 INSTRUMENTS & INSTRUMENTATION Journal of X-Ray Science and Technology Pub Date : 2025-03-03 DOI:10.1177/08953996241308759
Rongfeng Li, Dalin Wang
{"title":"KBA-PDNet:用于低剂量 CT 重构的具有核基关注度的基元-双展开网络。","authors":"Rongfeng Li, Dalin Wang","doi":"10.1177/08953996241308759","DOIUrl":null,"url":null,"abstract":"<p><p>Computed tomography (CT) image reconstruction is faced with challenge of balancing image quality and radiation dose. Recent unrolled optimization methods address low-dose CT image quality issues using convolutional neural networks or self-attention mechanisms as regularization operators. However, these approaches have limitations in adaptability, computational efficiency, or preservation of beneficial inductive biases. They also depend on initial reconstructions, potentially leading to information loss and error propagation. To overcome these limitations, Kernel Basis Attention Primal-Dual Network (KBA-PDNet) is proposed. The method unrolls multiple iterations of the proximal primal-dual optimization process, replacing traditional proximal operators with Kernel Basis Attention (KBA) modules. This design enables direct training from raw measurement data without relying on preliminary reconstructions. The KBA module achieves adaptability by learning and dynamically fusing kernel bases, generating customized convolution kernels for each spatial location. This approach maintains computational efficiency while preserving beneficial inductive biases of convolutions. By training end-to-end from raw projection data, KBA-PDNet fully utilizes all original information, potentially capturing details lost in preliminary reconstructions. Experiments on simulated and clinical datasets demonstrate that KBA-PDNet outperforms existing approaches in both image quality and computational efficiency.</p>","PeriodicalId":49948,"journal":{"name":"Journal of X-Ray Science and Technology","volume":" ","pages":"8953996241308759"},"PeriodicalIF":1.7000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"KBA-PDNet: A primal-dual unrolling network with kernel basis attention for low-dose CT reconstruction.\",\"authors\":\"Rongfeng Li, Dalin Wang\",\"doi\":\"10.1177/08953996241308759\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Computed tomography (CT) image reconstruction is faced with challenge of balancing image quality and radiation dose. Recent unrolled optimization methods address low-dose CT image quality issues using convolutional neural networks or self-attention mechanisms as regularization operators. However, these approaches have limitations in adaptability, computational efficiency, or preservation of beneficial inductive biases. They also depend on initial reconstructions, potentially leading to information loss and error propagation. To overcome these limitations, Kernel Basis Attention Primal-Dual Network (KBA-PDNet) is proposed. The method unrolls multiple iterations of the proximal primal-dual optimization process, replacing traditional proximal operators with Kernel Basis Attention (KBA) modules. This design enables direct training from raw measurement data without relying on preliminary reconstructions. The KBA module achieves adaptability by learning and dynamically fusing kernel bases, generating customized convolution kernels for each spatial location. This approach maintains computational efficiency while preserving beneficial inductive biases of convolutions. By training end-to-end from raw projection data, KBA-PDNet fully utilizes all original information, potentially capturing details lost in preliminary reconstructions. Experiments on simulated and clinical datasets demonstrate that KBA-PDNet outperforms existing approaches in both image quality and computational efficiency.</p>\",\"PeriodicalId\":49948,\"journal\":{\"name\":\"Journal of X-Ray Science and Technology\",\"volume\":\" \",\"pages\":\"8953996241308759\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2025-03-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of X-Ray Science and Technology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1177/08953996241308759\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"INSTRUMENTS & INSTRUMENTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of X-Ray Science and Technology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/08953996241308759","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
KBA-PDNet: A primal-dual unrolling network with kernel basis attention for low-dose CT reconstruction.

Computed tomography (CT) image reconstruction is faced with challenge of balancing image quality and radiation dose. Recent unrolled optimization methods address low-dose CT image quality issues using convolutional neural networks or self-attention mechanisms as regularization operators. However, these approaches have limitations in adaptability, computational efficiency, or preservation of beneficial inductive biases. They also depend on initial reconstructions, potentially leading to information loss and error propagation. To overcome these limitations, Kernel Basis Attention Primal-Dual Network (KBA-PDNet) is proposed. The method unrolls multiple iterations of the proximal primal-dual optimization process, replacing traditional proximal operators with Kernel Basis Attention (KBA) modules. This design enables direct training from raw measurement data without relying on preliminary reconstructions. The KBA module achieves adaptability by learning and dynamically fusing kernel bases, generating customized convolution kernels for each spatial location. This approach maintains computational efficiency while preserving beneficial inductive biases of convolutions. By training end-to-end from raw projection data, KBA-PDNet fully utilizes all original information, potentially capturing details lost in preliminary reconstructions. Experiments on simulated and clinical datasets demonstrate that KBA-PDNet outperforms existing approaches in both image quality and computational efficiency.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.90
自引率
23.30%
发文量
150
审稿时长
3 months
期刊介绍: Research areas within the scope of the journal include: Interaction of x-rays with matter: x-ray phenomena, biological effects of radiation, radiation safety and optical constants X-ray sources: x-rays from synchrotrons, x-ray lasers, plasmas, and other sources, conventional or unconventional Optical elements: grazing incidence optics, multilayer mirrors, zone plates, gratings, other diffraction optics Optical instruments: interferometers, spectrometers, microscopes, telescopes, microprobes
期刊最新文献
Feasibility exploration of myocardial blood flow synthesis from a simulated static myocardial computed tomography perfusion via a deep neural network. KBA-PDNet: A primal-dual unrolling network with kernel basis attention for low-dose CT reconstruction. Comparative analysis of machine learning and deep learning algorithms for knee arthritis detection using YOLOv8 models. A deep learning detection method for pancreatic cystic neoplasm based on Mamba architecture. A novel detail-enhanced wavelet domain feature compensation network for sparse-view X-ray computed laminography.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1