IF 17.3 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Matter Pub Date : 2025-03-04 DOI:10.1016/j.matt.2025.102010
Il Woo Ock, Zhaoqi Duan, Jing Xu, Xun Zhao, Jun Chen
{"title":"Starfish-inspired magnetoelastic generator array for ocean wave energy harvesting","authors":"Il Woo Ock, Zhaoqi Duan, Jing Xu, Xun Zhao, Jun Chen","doi":"10.1016/j.matt.2025.102010","DOIUrl":null,"url":null,"abstract":"The direction and frequency drift of ocean waves presents considerable challenges to existing platform technologies to utilize such energy. Here, we present a starfish-inspired magnetoelastic generator (MEG) array floating on the ocean surface, efficiently converting irregular ocean wave fluctuations into electricity for sustainable water splitting and hydrogen (H<sub>2</sub>) fuel production. Within the starfish-inspired MEG array system, each MEG unit that harnesses the magnetoelastic effect to efficiently convert local ocean wave energy into electricity with a voltage of 12.52 mV cm⁻<sup>2</sup> and a current of 0.24 mA cm⁻<sup>2</sup> at 2 Hz. By integrating eight such units onto the tube feet, the starfish-inspired system achieved a maximum peak voltage of 4.33 V, charged a capacitor to 2.42 V within 80 s and electrolyzed the water to continuously produce H<sub>2</sub> at a rate of 1.18 μL min⁻<sup>1</sup>. The starfish-inspired MEG array is a milestone for ocean wave energy harvesting, promoting H<sub>2</sub> economics and carbon neutrality.","PeriodicalId":388,"journal":{"name":"Matter","volume":"18 1","pages":""},"PeriodicalIF":17.3000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matter","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.matt.2025.102010","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

海洋波浪的方向和频率漂移给利用这种能量的现有平台技术带来了巨大挑战。在这里,我们展示了一种受海星启发的磁弹性发电机(MEG)阵列,它漂浮在海面上,能有效地将不规则的海浪波动转化为电能,用于可持续的水分离和氢(H2)燃料生产。在受海星启发的 MEG 阵列系统中,每个 MEG 单元都能利用磁弹性效应有效地将局部海浪能量转化为电能,电压为 12.52 mV cm-2,电流为 0.24 mA cm-2,频率为 2 Hz。通过在管脚上集成八个这样的单元,受海星启发的系统获得了 4.33 V 的最大峰值电压,在 80 秒内将电容器充电至 2.42 V,并以 1.18 μL min-1 的速率连续电解水以产生 H2。受海星启发的 MEG 阵列是海洋波浪能收集的一个里程碑,促进了 H2 经济性和碳中和。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Starfish-inspired magnetoelastic generator array for ocean wave energy harvesting
The direction and frequency drift of ocean waves presents considerable challenges to existing platform technologies to utilize such energy. Here, we present a starfish-inspired magnetoelastic generator (MEG) array floating on the ocean surface, efficiently converting irregular ocean wave fluctuations into electricity for sustainable water splitting and hydrogen (H2) fuel production. Within the starfish-inspired MEG array system, each MEG unit that harnesses the magnetoelastic effect to efficiently convert local ocean wave energy into electricity with a voltage of 12.52 mV cm⁻2 and a current of 0.24 mA cm⁻2 at 2 Hz. By integrating eight such units onto the tube feet, the starfish-inspired system achieved a maximum peak voltage of 4.33 V, charged a capacitor to 2.42 V within 80 s and electrolyzed the water to continuously produce H2 at a rate of 1.18 μL min⁻1. The starfish-inspired MEG array is a milestone for ocean wave energy harvesting, promoting H2 economics and carbon neutrality.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Matter
Matter MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
26.30
自引率
2.60%
发文量
367
期刊介绍: Matter, a monthly journal affiliated with Cell, spans the broad field of materials science from nano to macro levels,covering fundamentals to applications. Embracing groundbreaking technologies,it includes full-length research articles,reviews, perspectives,previews, opinions, personnel stories, and general editorial content. Matter aims to be the primary resource for researchers in academia and industry, inspiring the next generation of materials scientists.
期刊最新文献
Microneedles with an anisotropic porous microstructure facilitate the transdermal delivery of small molecules, lipid nanoparticles, and T cells Strain-gradient-induced modulation of photovoltaic efficiency π-d conjugated coordination mediated catalysis for four-electron-transfer fast-charging aqueous zinc-iodine batteries Nanopore signatures of major alcoholic beverages Increased resistance to photooxidation in Dion-Jacobson lead halide perovskites: Implication for perovskite device stability
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1