IF 6.7 2区 医学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS IEEE Journal of Biomedical and Health Informatics Pub Date : 2025-02-04 DOI:10.1109/JBHI.2025.3538497
Zibo Huang, Xinrui Weng, Le Ou-Yang
{"title":"GFLearn: Generalized Feature Learning for Drug-Target Binding Affinity Prediction.","authors":"Zibo Huang, Xinrui Weng, Le Ou-Yang","doi":"10.1109/JBHI.2025.3538497","DOIUrl":null,"url":null,"abstract":"<p><p>Predicting drug-target binding affinity is critical for drug discovery, as it helps identify promising drug candidates and predict their effectiveness. Recent advancements in deep learning have made significant progress in tackling this task. However, existing methods heavily rely on training data, and their performance is often limited when predicting binding affinities for new drugs and targets. To address this challenge, we propose a novel Generalized Feature Learning (GFLearn) model for drug-target binding affinity prediction. By integrating Graph Neural Networks (GNNs) with a self-supervised invariant feature learning module, our GFLearn model can extract robust and highly generalizable features from both drugs and targets, significantly enhancing prediction performance. This innovation enables the model to effectively predict binding affinities for previously unseen drugs or targets, while also mitigates the common issue of prediction performance degrading due to shifts in data distribution. Extensive experiments were conducted on two diverse datasets across three challenging scenarios: new drugs, new targets, and combinations of both. Comparisons with state-of-the-art methods demonstrated that our GFLearn model consistently outperformed others, showcasing its robustness across various prediction tasks. Additionally, cross-dataset evaluations and noise perturbation experiments further validated the model's generalizability across different data distributions. Case studies on two drug-target pairs, Canertinib-PIK3C2G and MLN8054-FLT1, provided further evidence of GFLearn's ability to make accurate binding affinity predictions, offering valuable insights for drug screening and repurposing efforts.</p>","PeriodicalId":13073,"journal":{"name":"IEEE Journal of Biomedical and Health Informatics","volume":"PP ","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Biomedical and Health Informatics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/JBHI.2025.3538497","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

预测药物与靶点的结合亲和力对药物发现至关重要,因为这有助于确定有前途的候选药物并预测其有效性。深度学习领域的最新进展在解决这一任务方面取得了重大进展。然而,现有方法严重依赖训练数据,在预测新药和新靶点的结合亲和力时,其性能往往受到限制。为了应对这一挑战,我们提出了一种用于药物与靶点结合亲和力预测的新型广义特征学习(GFLearn)模型。通过将图神经网络(GNN)与自监督不变特征学习模块相结合,我们的 GFLearn 模型可以从药物和靶标中提取稳健且高度泛化的特征,从而显著提高预测性能。这一创新使该模型能够有效预测以前未见过的药物或靶标的结合亲和力,同时也缓解了因数据分布变化而导致预测性能下降的常见问题。我们在两个不同的数据集上进行了广泛的实验,涉及三种具有挑战性的情况:新药、新靶点以及两者的组合。与最先进方法的比较表明,我们的 GFLearn 模型始终优于其他方法,展示了它在各种预测任务中的鲁棒性。此外,跨数据集评估和噪声扰动实验进一步验证了该模型在不同数据分布中的通用性。对Canertinib-PIK3C2G和MLN8054-FLT1这两对药物-靶点的案例研究进一步证明了GFLearn准确预测结合亲和力的能力,为药物筛选和再利用工作提供了宝贵的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
GFLearn: Generalized Feature Learning for Drug-Target Binding Affinity Prediction.

Predicting drug-target binding affinity is critical for drug discovery, as it helps identify promising drug candidates and predict their effectiveness. Recent advancements in deep learning have made significant progress in tackling this task. However, existing methods heavily rely on training data, and their performance is often limited when predicting binding affinities for new drugs and targets. To address this challenge, we propose a novel Generalized Feature Learning (GFLearn) model for drug-target binding affinity prediction. By integrating Graph Neural Networks (GNNs) with a self-supervised invariant feature learning module, our GFLearn model can extract robust and highly generalizable features from both drugs and targets, significantly enhancing prediction performance. This innovation enables the model to effectively predict binding affinities for previously unseen drugs or targets, while also mitigates the common issue of prediction performance degrading due to shifts in data distribution. Extensive experiments were conducted on two diverse datasets across three challenging scenarios: new drugs, new targets, and combinations of both. Comparisons with state-of-the-art methods demonstrated that our GFLearn model consistently outperformed others, showcasing its robustness across various prediction tasks. Additionally, cross-dataset evaluations and noise perturbation experiments further validated the model's generalizability across different data distributions. Case studies on two drug-target pairs, Canertinib-PIK3C2G and MLN8054-FLT1, provided further evidence of GFLearn's ability to make accurate binding affinity predictions, offering valuable insights for drug screening and repurposing efforts.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Journal of Biomedical and Health Informatics
IEEE Journal of Biomedical and Health Informatics COMPUTER SCIENCE, INFORMATION SYSTEMS-COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
CiteScore
13.60
自引率
6.50%
发文量
1151
期刊介绍: IEEE Journal of Biomedical and Health Informatics publishes original papers presenting recent advances where information and communication technologies intersect with health, healthcare, life sciences, and biomedicine. Topics include acquisition, transmission, storage, retrieval, management, and analysis of biomedical and health information. The journal covers applications of information technologies in healthcare, patient monitoring, preventive care, early disease diagnosis, therapy discovery, and personalized treatment protocols. It explores electronic medical and health records, clinical information systems, decision support systems, medical and biological imaging informatics, wearable systems, body area/sensor networks, and more. Integration-related topics like interoperability, evidence-based medicine, and secure patient data are also addressed.
期刊最新文献
Table of Contents Front Cover IEEE Journal of Biomedical and Health Informatics Information for Authors IEEE Journal of Biomedical and Health Informatics Publication Information Guest Editorial:Application of Computational Techniques in Drug Discovery and Disease Treatment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1