{"title":"Dynamic Graph Transformer for Brain Disorder Diagnosis.","authors":"Ahsan Shehzad, Dongyu Zhang, Shuo Yu, Shagufta Abid, Feng Xia","doi":"10.1109/JBHI.2025.3538040","DOIUrl":null,"url":null,"abstract":"<p><p>Dynamic brain networks play a pivotal role in diagnosing brain disorders by capturing temporal changes in brain activity and connectivity. Previous methods often rely on sliding-window approaches for constructing these networks using fMRI data. However, these methods face two key limitations: a fixed temporal length that inadequately captures brain activity dynamics and a global spatial scope that introduces noise and reduces sensitivity to localized dysfunctions. These challenges can lead to inaccurate brain network representations and potential misdiagnoses.To address these challenges, we propose BrainDGT, a dynamic Graph Transformer model designed to enhance the construction and analysis of dynamic brain networks for more accurate diagnosis of brain disorders. BrainDGT leverages adaptive brain states by deconvolving the Hemodynamic Response Function (HRF) within individual functional brain modules to generate dynamic graphs, addressing the limitations of fixed temporal length and global spatial scope. The model learns spatio-temporal local features through attention mechanisms within these graphs and captures global interactions across modules using adaptive fusion. This dual-level integration enhances the model's ability to analyze complex brain connectivity patterns. We validate BrainDGT's effectiveness through classification experiments on three fMRI datasets (ADNI, PPMI, and ABIDE), where it outperforms state-of-the-art methods. By enabling adaptive, localized analysis of dynamic brain networks, BrainDGT advances neuroimaging and supports the development of more precise diagnostic and treatment strategies in biomedical research.</p>","PeriodicalId":13073,"journal":{"name":"IEEE Journal of Biomedical and Health Informatics","volume":"PP ","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Biomedical and Health Informatics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/JBHI.2025.3538040","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Dynamic Graph Transformer for Brain Disorder Diagnosis.
Dynamic brain networks play a pivotal role in diagnosing brain disorders by capturing temporal changes in brain activity and connectivity. Previous methods often rely on sliding-window approaches for constructing these networks using fMRI data. However, these methods face two key limitations: a fixed temporal length that inadequately captures brain activity dynamics and a global spatial scope that introduces noise and reduces sensitivity to localized dysfunctions. These challenges can lead to inaccurate brain network representations and potential misdiagnoses.To address these challenges, we propose BrainDGT, a dynamic Graph Transformer model designed to enhance the construction and analysis of dynamic brain networks for more accurate diagnosis of brain disorders. BrainDGT leverages adaptive brain states by deconvolving the Hemodynamic Response Function (HRF) within individual functional brain modules to generate dynamic graphs, addressing the limitations of fixed temporal length and global spatial scope. The model learns spatio-temporal local features through attention mechanisms within these graphs and captures global interactions across modules using adaptive fusion. This dual-level integration enhances the model's ability to analyze complex brain connectivity patterns. We validate BrainDGT's effectiveness through classification experiments on three fMRI datasets (ADNI, PPMI, and ABIDE), where it outperforms state-of-the-art methods. By enabling adaptive, localized analysis of dynamic brain networks, BrainDGT advances neuroimaging and supports the development of more precise diagnostic and treatment strategies in biomedical research.
期刊介绍:
IEEE Journal of Biomedical and Health Informatics publishes original papers presenting recent advances where information and communication technologies intersect with health, healthcare, life sciences, and biomedicine. Topics include acquisition, transmission, storage, retrieval, management, and analysis of biomedical and health information. The journal covers applications of information technologies in healthcare, patient monitoring, preventive care, early disease diagnosis, therapy discovery, and personalized treatment protocols. It explores electronic medical and health records, clinical information systems, decision support systems, medical and biological imaging informatics, wearable systems, body area/sensor networks, and more. Integration-related topics like interoperability, evidence-based medicine, and secure patient data are also addressed.