{"title":"使用自动化系统全面描述各向同性材料的蠕变顺应性。","authors":"Jonas M Maas, Falk K Wittel","doi":"10.1515/hf-2024-0108","DOIUrl":null,"url":null,"abstract":"<p><p>Determining the creep compliances of orthotropic composite materials requires experiments in at least three different uniaxial and biaxial loading directions. Up to date, data respecting multiple climates and all anatomical directions are sparse for hygro-responsive materials like Norway spruce. Consequently, simulation models of wood frequently over-simplify creep, e.g., by proportionally scaling missing components or neglecting climatic influences. To overcome such simplifications, an automated computer-controlled climatized creep rack was developed, that experimentally assesses moisture-dependent viscoelasticity and mechanosorption in all anatomical directions. The device simultaneously measures the creep strains of three dogbone tension samples, three flat compression samples, and six Arcan shear samples via Digital Image Correlation. This allows for ascertaining the complete orthotropic compliance tensors while accounting for loading direction asymmetries. This paper explains the creep rack's structure and demonstrates its use by determining all nine independent creep compliance components of Norway spruce at 65 % relative humidity. The data shows that loading asymmetry effects amount up to 18 %. Furthermore, the found creep compliance tensor is not proportional to the elastic compliance tensor. By clustering the compliance components, this work identifies four necessary components to represent the full orthotropy of the compliance tensor, obtainable from not less than two experiments.</p>","PeriodicalId":13083,"journal":{"name":"Holzforschung","volume":"79 2-3","pages":"116-133"},"PeriodicalIF":2.2000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11871554/pdf/","citationCount":"0","resultStr":"{\"title\":\"Comprehensive creep compliance characterization of orthotropic materials using an automated system.\",\"authors\":\"Jonas M Maas, Falk K Wittel\",\"doi\":\"10.1515/hf-2024-0108\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Determining the creep compliances of orthotropic composite materials requires experiments in at least three different uniaxial and biaxial loading directions. Up to date, data respecting multiple climates and all anatomical directions are sparse for hygro-responsive materials like Norway spruce. Consequently, simulation models of wood frequently over-simplify creep, e.g., by proportionally scaling missing components or neglecting climatic influences. To overcome such simplifications, an automated computer-controlled climatized creep rack was developed, that experimentally assesses moisture-dependent viscoelasticity and mechanosorption in all anatomical directions. The device simultaneously measures the creep strains of three dogbone tension samples, three flat compression samples, and six Arcan shear samples via Digital Image Correlation. This allows for ascertaining the complete orthotropic compliance tensors while accounting for loading direction asymmetries. This paper explains the creep rack's structure and demonstrates its use by determining all nine independent creep compliance components of Norway spruce at 65 % relative humidity. The data shows that loading asymmetry effects amount up to 18 %. Furthermore, the found creep compliance tensor is not proportional to the elastic compliance tensor. By clustering the compliance components, this work identifies four necessary components to represent the full orthotropy of the compliance tensor, obtainable from not less than two experiments.</p>\",\"PeriodicalId\":13083,\"journal\":{\"name\":\"Holzforschung\",\"volume\":\"79 2-3\",\"pages\":\"116-133\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-02-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11871554/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Holzforschung\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1515/hf-2024-0108\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/3/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"FORESTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Holzforschung","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1515/hf-2024-0108","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"FORESTRY","Score":null,"Total":0}
Comprehensive creep compliance characterization of orthotropic materials using an automated system.
Determining the creep compliances of orthotropic composite materials requires experiments in at least three different uniaxial and biaxial loading directions. Up to date, data respecting multiple climates and all anatomical directions are sparse for hygro-responsive materials like Norway spruce. Consequently, simulation models of wood frequently over-simplify creep, e.g., by proportionally scaling missing components or neglecting climatic influences. To overcome such simplifications, an automated computer-controlled climatized creep rack was developed, that experimentally assesses moisture-dependent viscoelasticity and mechanosorption in all anatomical directions. The device simultaneously measures the creep strains of three dogbone tension samples, three flat compression samples, and six Arcan shear samples via Digital Image Correlation. This allows for ascertaining the complete orthotropic compliance tensors while accounting for loading direction asymmetries. This paper explains the creep rack's structure and demonstrates its use by determining all nine independent creep compliance components of Norway spruce at 65 % relative humidity. The data shows that loading asymmetry effects amount up to 18 %. Furthermore, the found creep compliance tensor is not proportional to the elastic compliance tensor. By clustering the compliance components, this work identifies four necessary components to represent the full orthotropy of the compliance tensor, obtainable from not less than two experiments.
期刊介绍:
Holzforschung is an international scholarly journal that publishes cutting-edge research on the biology, chemistry, physics and technology of wood and wood components. High quality papers about biotechnology and tree genetics are also welcome. Rated year after year as one of the top scientific journals in the category of Pulp and Paper (ISI Journal Citation Index), Holzforschung represents innovative, high quality basic and applied research. The German title reflects the journal''s origins in a long scientific tradition, but all articles are published in English to stimulate and promote cooperation between experts all over the world. Ahead-of-print publishing ensures fastest possible knowledge transfer.