Jun Zhang, Di Wu, Yating Zhang, Xiaoqi Feng, Hongbo Gao
{"title":"DNA methylation dynamics in male germline development in Brassica Rapa.","authors":"Jun Zhang, Di Wu, Yating Zhang, Xiaoqi Feng, Hongbo Gao","doi":"10.1186/s43897-024-00137-9","DOIUrl":null,"url":null,"abstract":"<p><p>Dynamic DNA methylation represses transposable elements (TEs) and regulates gene activity, playing a pivotal role in plant development. Although substantial progress has been made in understanding DNA methylation reprogramming during germline development in Arabidopsis thaliana, whether similar mechanisms exist in other dicot plants remains unclear. Here, we analyzed DNA methylation levels in meiocytes, microspores, and pollens of Brassica Rapa using whole-genome bisulfite sequencing (WGBS). Global DNA methylation analysis revealed similar CHH methylation reprogramming compared to Arabidopsis, while distinct patterns were observed in the dynamics of global CG and CHG methylation in B. rapa. Differentially methylated region (DMR) analysis identified specifically methylated loci in the male sex cells of B. Rapa with a stronger tendency to target genes, similar to observations in Arabidopsis. Additionally, we found that the activity and genomic targeting preference of the small RNA-directed DNA methylation (RdDM) were altered during B. Rapa male germline development. A subset of long terminal repeat (LTR) TEs were activated, possibly due to the dynamic regulation of DNA methylation during male sexual development in B. Rapa. These findings provided new insights into the evolution of epigenetic reprogramming mechanisms in plants.</p>","PeriodicalId":29970,"journal":{"name":"Molecular Horticulture","volume":"5 1","pages":"16"},"PeriodicalIF":10.6000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11877836/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Horticulture","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s43897-024-00137-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HORTICULTURE","Score":null,"Total":0}
引用次数: 0
摘要
动态 DNA 甲基化可抑制转座元件(TE)并调节基因活性,在植物发育过程中发挥着关键作用。虽然在了解拟南芥种系发育过程中的 DNA 甲基化重编程方面取得了重大进展,但其他双子叶植物是否存在类似的机制仍不清楚。在这里,我们利用全基因组亚硫酸氢盐测序(WGBS)分析了甘蓝型油菜的减数分裂细胞、小孢子和花粉中的 DNA 甲基化水平。与拟南芥相比,全局DNA甲基化分析显示了相似的CHH甲基化重编程,而在芸苔属植物中观察到了全局CG和CHG甲基化动态的不同模式。差异甲基化区域(DMR)分析确定了拉帕雄性细胞中的特异甲基化位点,这些位点更倾向于靶基因,这与拟南芥中的观察结果类似。此外,我们发现小 RNA 引导的 DNA 甲基化(RdDM)的活性和基因组靶向偏好在 B. Rapa 雄性生殖细胞发育过程中发生了改变。一个长末端重复(LTR)TEs子集被激活,这可能是由于B. Rapa雄性性发育过程中DNA甲基化的动态调控。这些发现为植物表观遗传重编程机制的进化提供了新的见解。
DNA methylation dynamics in male germline development in Brassica Rapa.
Dynamic DNA methylation represses transposable elements (TEs) and regulates gene activity, playing a pivotal role in plant development. Although substantial progress has been made in understanding DNA methylation reprogramming during germline development in Arabidopsis thaliana, whether similar mechanisms exist in other dicot plants remains unclear. Here, we analyzed DNA methylation levels in meiocytes, microspores, and pollens of Brassica Rapa using whole-genome bisulfite sequencing (WGBS). Global DNA methylation analysis revealed similar CHH methylation reprogramming compared to Arabidopsis, while distinct patterns were observed in the dynamics of global CG and CHG methylation in B. rapa. Differentially methylated region (DMR) analysis identified specifically methylated loci in the male sex cells of B. Rapa with a stronger tendency to target genes, similar to observations in Arabidopsis. Additionally, we found that the activity and genomic targeting preference of the small RNA-directed DNA methylation (RdDM) were altered during B. Rapa male germline development. A subset of long terminal repeat (LTR) TEs were activated, possibly due to the dynamic regulation of DNA methylation during male sexual development in B. Rapa. These findings provided new insights into the evolution of epigenetic reprogramming mechanisms in plants.
期刊介绍:
Aims
Molecular Horticulture aims to publish research and review articles that significantly advance our knowledge in understanding how the horticultural crops or their parts operate mechanistically. Articles should have profound impacts not only in terms of high citation number or the like, but more importantly on the direction of the horticultural research field.
Scope
Molecular Horticulture publishes original Research Articles, Letters, and Reviews on novel discoveries on the following, but not limited to, aspects of horticultural plants (including medicinal plants):
▪ Developmental and evolutionary biology
▪ Physiology, biochemistry and cell biology
▪ Plant-microbe and plant-environment interactions
▪ Genetics and epigenetics
▪ Molecular breeding and biotechnology
▪ Secondary metabolism and synthetic biology
▪ Multi-omics dealing with data sets of genome, transcriptome, proteome, metabolome, epigenome and/or microbiome.
The journal also welcomes research articles using model plants that reveal mechanisms and/or principles readily applicable to horticultural plants, translational research articles involving application of basic knowledge (including those of model plants) to the horticultural crops, novel Methods and Resources of broad interest.
In addition, the journal publishes Editorial, News and View, and Commentary and Perspective on current, significant events and topics in global horticultural fields with international interests.