黄曲霉毒素 B1 暴露通过破坏氧化还原平衡和激活 C57BL/6 J 小鼠体内的铁凋亡信号,诱发类似阿尔茨海默病的病理变化

IF 8.2 1区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES Science of the Total Environment Pub Date : 2025-03-06 DOI:10.1016/j.scitotenv.2025.179049
Jinxian Lin , Huihui Hong , Sicheng Liu , Zhengwei Liang , Qixue Zheng , Kun Luo , Jiayi Li , Zhulin Du , Jinping Yu , Lingling Yang , Ping Deng , Huifeng Pi , Zhengping Yu , Wei Yuan , Zhou Zhou
{"title":"黄曲霉毒素 B1 暴露通过破坏氧化还原平衡和激活 C57BL/6 J 小鼠体内的铁凋亡信号,诱发类似阿尔茨海默病的病理变化","authors":"Jinxian Lin ,&nbsp;Huihui Hong ,&nbsp;Sicheng Liu ,&nbsp;Zhengwei Liang ,&nbsp;Qixue Zheng ,&nbsp;Kun Luo ,&nbsp;Jiayi Li ,&nbsp;Zhulin Du ,&nbsp;Jinping Yu ,&nbsp;Lingling Yang ,&nbsp;Ping Deng ,&nbsp;Huifeng Pi ,&nbsp;Zhengping Yu ,&nbsp;Wei Yuan ,&nbsp;Zhou Zhou","doi":"10.1016/j.scitotenv.2025.179049","DOIUrl":null,"url":null,"abstract":"<div><div>Aflatoxin B1 (AFB1) is one of the most toxic mycotoxins with neurotoxicity. Human exposure to AFB1 via contaminated foodstuffs has been linked to the risk of cognitive impairment, which may contribute to the progression of Alzheimer's disease (AD). However, the mechanism underlying the pathogenesis of AD in relation to AFB1 exposure is not clear. Herein, C57BL/6 J mice were exposed to 1.5 mg/L AFB1 in drinking water for 8 weeks. It was found that AFB1 damaged blood-brain barrier function, accumulated in the brain, and led to cognitive impairments and AD-like pathology in the hippocampus. Impaired cognitive function was indicated by the significant alterations in Morris' water maze and Y-maze tests at 8 weeks after AFB1 exposure. Concurrently, AD-like pathology was evinced by a marked neuronal loss and the up-regulated AD related gene and protein expressions in the hippocampus. AFB1 exposure remarkably disrupted redox homeostasis and induced ferroptosis both in the hippocampus at 8 weeks after AFB1 exposure and in cultured hippocampal neuron in vitro as indicated by the suppressions on SOD and CAT activities, the down-regulation of Slc7a11/Gpx4 expressions, the decline in GSH content, the increase in MDA and the lipid peroxidation. AFB1 exposure also increased Fe<sup>2+</sup> content significantly at 8 weeks after exposure. In addition, we demonstrated that ferroptosis inhibition by Fer-1 obviously alleviated AFB1 neurotoxicity in HT22 cells. These results revealed an unknown pivotal role of ferroptosis in AFB1 neurotoxicity in relation to AD pathogenesis and emphasized the importance to reduce the health risk of AFB1 exposure as an etiology of AD in humans.</div></div>","PeriodicalId":422,"journal":{"name":"Science of the Total Environment","volume":"970 ","pages":"Article 179049"},"PeriodicalIF":8.2000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Aflatoxin B1 exposure induces Alzheimer's disease like pathology by disrupting redox homeostasis and activating ferroptotic signals in C57BL/6 J mice\",\"authors\":\"Jinxian Lin ,&nbsp;Huihui Hong ,&nbsp;Sicheng Liu ,&nbsp;Zhengwei Liang ,&nbsp;Qixue Zheng ,&nbsp;Kun Luo ,&nbsp;Jiayi Li ,&nbsp;Zhulin Du ,&nbsp;Jinping Yu ,&nbsp;Lingling Yang ,&nbsp;Ping Deng ,&nbsp;Huifeng Pi ,&nbsp;Zhengping Yu ,&nbsp;Wei Yuan ,&nbsp;Zhou Zhou\",\"doi\":\"10.1016/j.scitotenv.2025.179049\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Aflatoxin B1 (AFB1) is one of the most toxic mycotoxins with neurotoxicity. Human exposure to AFB1 via contaminated foodstuffs has been linked to the risk of cognitive impairment, which may contribute to the progression of Alzheimer's disease (AD). However, the mechanism underlying the pathogenesis of AD in relation to AFB1 exposure is not clear. Herein, C57BL/6 J mice were exposed to 1.5 mg/L AFB1 in drinking water for 8 weeks. It was found that AFB1 damaged blood-brain barrier function, accumulated in the brain, and led to cognitive impairments and AD-like pathology in the hippocampus. Impaired cognitive function was indicated by the significant alterations in Morris' water maze and Y-maze tests at 8 weeks after AFB1 exposure. Concurrently, AD-like pathology was evinced by a marked neuronal loss and the up-regulated AD related gene and protein expressions in the hippocampus. AFB1 exposure remarkably disrupted redox homeostasis and induced ferroptosis both in the hippocampus at 8 weeks after AFB1 exposure and in cultured hippocampal neuron in vitro as indicated by the suppressions on SOD and CAT activities, the down-regulation of Slc7a11/Gpx4 expressions, the decline in GSH content, the increase in MDA and the lipid peroxidation. AFB1 exposure also increased Fe<sup>2+</sup> content significantly at 8 weeks after exposure. In addition, we demonstrated that ferroptosis inhibition by Fer-1 obviously alleviated AFB1 neurotoxicity in HT22 cells. These results revealed an unknown pivotal role of ferroptosis in AFB1 neurotoxicity in relation to AD pathogenesis and emphasized the importance to reduce the health risk of AFB1 exposure as an etiology of AD in humans.</div></div>\",\"PeriodicalId\":422,\"journal\":{\"name\":\"Science of the Total Environment\",\"volume\":\"970 \",\"pages\":\"Article 179049\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2025-03-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science of the Total Environment\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0048969725006849\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science of the Total Environment","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0048969725006849","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Aflatoxin B1 exposure induces Alzheimer's disease like pathology by disrupting redox homeostasis and activating ferroptotic signals in C57BL/6 J mice
Aflatoxin B1 (AFB1) is one of the most toxic mycotoxins with neurotoxicity. Human exposure to AFB1 via contaminated foodstuffs has been linked to the risk of cognitive impairment, which may contribute to the progression of Alzheimer's disease (AD). However, the mechanism underlying the pathogenesis of AD in relation to AFB1 exposure is not clear. Herein, C57BL/6 J mice were exposed to 1.5 mg/L AFB1 in drinking water for 8 weeks. It was found that AFB1 damaged blood-brain barrier function, accumulated in the brain, and led to cognitive impairments and AD-like pathology in the hippocampus. Impaired cognitive function was indicated by the significant alterations in Morris' water maze and Y-maze tests at 8 weeks after AFB1 exposure. Concurrently, AD-like pathology was evinced by a marked neuronal loss and the up-regulated AD related gene and protein expressions in the hippocampus. AFB1 exposure remarkably disrupted redox homeostasis and induced ferroptosis both in the hippocampus at 8 weeks after AFB1 exposure and in cultured hippocampal neuron in vitro as indicated by the suppressions on SOD and CAT activities, the down-regulation of Slc7a11/Gpx4 expressions, the decline in GSH content, the increase in MDA and the lipid peroxidation. AFB1 exposure also increased Fe2+ content significantly at 8 weeks after exposure. In addition, we demonstrated that ferroptosis inhibition by Fer-1 obviously alleviated AFB1 neurotoxicity in HT22 cells. These results revealed an unknown pivotal role of ferroptosis in AFB1 neurotoxicity in relation to AD pathogenesis and emphasized the importance to reduce the health risk of AFB1 exposure as an etiology of AD in humans.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Science of the Total Environment
Science of the Total Environment 环境科学-环境科学
CiteScore
17.60
自引率
10.20%
发文量
8726
审稿时长
2.4 months
期刊介绍: The Science of the Total Environment is an international journal dedicated to scientific research on the environment and its interaction with humanity. It covers a wide range of disciplines and seeks to publish innovative, hypothesis-driven, and impactful research that explores the entire environment, including the atmosphere, lithosphere, hydrosphere, biosphere, and anthroposphere. The journal's updated Aims & Scope emphasizes the importance of interdisciplinary environmental research with broad impact. Priority is given to studies that advance fundamental understanding and explore the interconnectedness of multiple environmental spheres. Field studies are preferred, while laboratory experiments must demonstrate significant methodological advancements or mechanistic insights with direct relevance to the environment.
期刊最新文献
A physical climate storyline for the Hercules storm in Portugal: Extreme coastal flooding in southwestern Europe under a changing climate Wastewater-borne markers of neurodegenerative disease: β-methylamino-L-alanine and aminomethylphosphonic acid Bioaccumulation of PCBs and OCPs in Antarctic phytoplankton and zooplankton: Insights into bioconcentration and biomagnification in Fildes Bay Heat exposure and respiratory diseases health outcomes: An umbrella review Concentrations, characteristics, influencing factors, and interactions of indoor and outdoor microplastics during the hot season at the intersection between tropical and subtropical zones
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1