IF 10.8 1区 环境科学与生态学 Q1 ENGINEERING, ENVIRONMENTAL 环境科学与技术 Pub Date : 2025-03-05 DOI:10.1021/acs.est.4c04812
Wietse Wiersma, Elise van Eynde, Rob N. J. Comans, Jan E. Groenenberg
{"title":"Quantifying the Accuracy, Uncertainty, and Sensitivity of Soil Geochemical Multisurface Models","authors":"Wietse Wiersma, Elise van Eynde, Rob N. J. Comans, Jan E. Groenenberg","doi":"10.1021/acs.est.4c04812","DOIUrl":null,"url":null,"abstract":"Geochemical multisurface models and their generic parameters for the solid-solution partitioning and speciation of metals have been used for decades. For soils the collective uncertainty and sensitivity of model parameters and soil-specific reactive surface properties has been insufficiently evaluated. We used statistical tools and data of diverse soils to quantify for Cd, Cu and Zn the uncertainty of model parameters and input values of the nonideal competitive adsorption (NICA)-Donnan model for organic matter (OM) coupled with the generalized two-layer model for metal-oxides. Subsequently, we quantified the uncertainty of speciation predictions and the sensitivity to model parameters and input values. Importantly, we established new generic NICA-Donnan parameters that substantially improved model accuracy, especially for Zn. Uncertainties generally followed Cu &lt; Cd &lt; Zn. With OM being the major binding surface across most soils, the affinity parameters (log <i>K</i><sub><i>i</i></sub>) were most influential. Compared to a “best-case” scenario with all relevant soil properties measured, a “simplified” scenario with assumptions about OM fractionation and metal-oxide specific surface area could be employed with a negligible effect on model accuracy and uncertainty. Our study provides a reference work with quantitative measures of model performance, which facilitates broader adoption of mechanistic multisurface models in addressing environmental challenges.","PeriodicalId":36,"journal":{"name":"环境科学与技术","volume":"16 1","pages":""},"PeriodicalIF":10.8000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"环境科学与技术","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.est.4c04812","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

地球化学多表面模型及其通用参数用于金属的固溶分配和标示已有几十年的历史。对于土壤而言,模型参数和土壤特定活性表面特性的总体不确定性和敏感性还没有得到充分评估。我们利用统计工具和不同土壤的数据,对镉、铜和锌的模型参数和输入值的不确定性进行了量化,这些参数和输入值是针对有机物(OM)的非理想竞争吸附(NICA)-Donnan 模型以及针对金属氧化物的广义双层模型的。随后,我们对标本预测的不确定性以及对模型参数和输入值的敏感性进行了量化。重要的是,我们建立了新的 NICA-Donnan 通用参数,大大提高了模型的准确性,尤其是锌的准确性。不确定性一般遵循铜、镉和锌。在大多数土壤中,有机质是主要的结合面,因此亲和力参数(log Ki)的影响最大。与测量了所有相关土壤特性的 "最佳情况 "相比,可以采用 "简化 "情况,即假设 OM 分馏和金属氧化物比表面积,但对模型准确性和不确定性的影响可以忽略不计。我们的研究为量化衡量模型性能提供了参考,有助于更广泛地采用机理多表面模型来应对环境挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Quantifying the Accuracy, Uncertainty, and Sensitivity of Soil Geochemical Multisurface Models
Geochemical multisurface models and their generic parameters for the solid-solution partitioning and speciation of metals have been used for decades. For soils the collective uncertainty and sensitivity of model parameters and soil-specific reactive surface properties has been insufficiently evaluated. We used statistical tools and data of diverse soils to quantify for Cd, Cu and Zn the uncertainty of model parameters and input values of the nonideal competitive adsorption (NICA)-Donnan model for organic matter (OM) coupled with the generalized two-layer model for metal-oxides. Subsequently, we quantified the uncertainty of speciation predictions and the sensitivity to model parameters and input values. Importantly, we established new generic NICA-Donnan parameters that substantially improved model accuracy, especially for Zn. Uncertainties generally followed Cu < Cd < Zn. With OM being the major binding surface across most soils, the affinity parameters (log Ki) were most influential. Compared to a “best-case” scenario with all relevant soil properties measured, a “simplified” scenario with assumptions about OM fractionation and metal-oxide specific surface area could be employed with a negligible effect on model accuracy and uncertainty. Our study provides a reference work with quantitative measures of model performance, which facilitates broader adoption of mechanistic multisurface models in addressing environmental challenges.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
环境科学与技术
环境科学与技术 环境科学-工程:环境
CiteScore
17.50
自引率
9.60%
发文量
12359
审稿时长
2.8 months
期刊介绍: Environmental Science & Technology (ES&T) is a co-sponsored academic and technical magazine by the Hubei Provincial Environmental Protection Bureau and the Hubei Provincial Academy of Environmental Sciences. Environmental Science & Technology (ES&T) holds the status of Chinese core journals, scientific papers source journals of China, Chinese Science Citation Database source journals, and Chinese Academic Journal Comprehensive Evaluation Database source journals. This publication focuses on the academic field of environmental protection, featuring articles related to environmental protection and technical advancements.
期刊最新文献
Dimensionless Parameters Define Criteria for Optimal Flow Velocity in Enhancing Chemotactic Response toward Residual Contaminants in Porous Media Photodegradation Controls of Potential Toxicity of Secondary Sunscreen-Derived Microplastics and Associated Leachates Marine Transport Barrier for Traditional and Emerging Per- and Polyfluoroalkyl Substances in the Southeast Indian Ocean and Antarctic Marginal Seas Machine Learning-based Classification for the Prioritization of Potentially Hazardous Chemicals with Structural Alerts in Nontarget Screening Future Life-Cycle Greenhouse Gas Emission Scenarios for the Austrian Building Stock: A Systematic Approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1