受容量超载限制的出生后右心室线粒体代谢成熟。

IF 1.1 Q2 MEDICINE, GENERAL & INTERNAL Intractable & rare diseases research Pub Date : 2025-02-28 DOI:10.5582/irdr.2024.01063
Juan Cao, Yingying Xiao, Haifa Hong, Zhongzhong Chen, Wenjun Qin
{"title":"受容量超载限制的出生后右心室线粒体代谢成熟。","authors":"Juan Cao, Yingying Xiao, Haifa Hong, Zhongzhong Chen, Wenjun Qin","doi":"10.5582/irdr.2024.01063","DOIUrl":null,"url":null,"abstract":"<p><p>Right ventricular volume overload (RVVO) is a common hemodynamic abnormality in patients with congenital heart disease (CHD) and frequently leads to pathological cardiac remodeling. Our previous research demonstrated that RVVO disrupts the metabolic maturation of cardiomyocytes. Mitochondrial metabolic maturation, a crucial process in postnatal cardiomyocyte development, remains poorly understood under RVVO conditions. In this study, an mouse RVVO model was established on postnatal day 7 by creating a fistula between the abdominal aorta and inferior vena cava, confirmed by abdominal ultrasound and echocardiography. Transcriptomic analyses revealed significant downregulation of genes linked to mitochondrial metabolic maturation. Transmission electron microscopy showed impaired mitochondrial structure and maturation markers, while Seahorse assays demonstrated a marked reduction in oxidative phosphorylation rates in RVVO cardiomyocytes. These findings collectively indicated that RVVO restricted mitochondrial metabolic maturation in the postnatal RV. Targeting mitochondrial metabolic maturation could offer a promising therapeutic strategy to mitigate RVVO-induced pathological remodeling.</p>","PeriodicalId":14420,"journal":{"name":"Intractable & rare diseases research","volume":"14 1","pages":"29-35"},"PeriodicalIF":1.1000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11878226/pdf/","citationCount":"0","resultStr":"{\"title\":\"Mitochondrial metabolic maturation in postnatal right ventricle restricted by volume overload.\",\"authors\":\"Juan Cao, Yingying Xiao, Haifa Hong, Zhongzhong Chen, Wenjun Qin\",\"doi\":\"10.5582/irdr.2024.01063\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Right ventricular volume overload (RVVO) is a common hemodynamic abnormality in patients with congenital heart disease (CHD) and frequently leads to pathological cardiac remodeling. Our previous research demonstrated that RVVO disrupts the metabolic maturation of cardiomyocytes. Mitochondrial metabolic maturation, a crucial process in postnatal cardiomyocyte development, remains poorly understood under RVVO conditions. In this study, an mouse RVVO model was established on postnatal day 7 by creating a fistula between the abdominal aorta and inferior vena cava, confirmed by abdominal ultrasound and echocardiography. Transcriptomic analyses revealed significant downregulation of genes linked to mitochondrial metabolic maturation. Transmission electron microscopy showed impaired mitochondrial structure and maturation markers, while Seahorse assays demonstrated a marked reduction in oxidative phosphorylation rates in RVVO cardiomyocytes. These findings collectively indicated that RVVO restricted mitochondrial metabolic maturation in the postnatal RV. Targeting mitochondrial metabolic maturation could offer a promising therapeutic strategy to mitigate RVVO-induced pathological remodeling.</p>\",\"PeriodicalId\":14420,\"journal\":{\"name\":\"Intractable & rare diseases research\",\"volume\":\"14 1\",\"pages\":\"29-35\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2025-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11878226/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Intractable & rare diseases research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5582/irdr.2024.01063\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MEDICINE, GENERAL & INTERNAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intractable & rare diseases research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5582/irdr.2024.01063","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICINE, GENERAL & INTERNAL","Score":null,"Total":0}
引用次数: 0
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Mitochondrial metabolic maturation in postnatal right ventricle restricted by volume overload.

Right ventricular volume overload (RVVO) is a common hemodynamic abnormality in patients with congenital heart disease (CHD) and frequently leads to pathological cardiac remodeling. Our previous research demonstrated that RVVO disrupts the metabolic maturation of cardiomyocytes. Mitochondrial metabolic maturation, a crucial process in postnatal cardiomyocyte development, remains poorly understood under RVVO conditions. In this study, an mouse RVVO model was established on postnatal day 7 by creating a fistula between the abdominal aorta and inferior vena cava, confirmed by abdominal ultrasound and echocardiography. Transcriptomic analyses revealed significant downregulation of genes linked to mitochondrial metabolic maturation. Transmission electron microscopy showed impaired mitochondrial structure and maturation markers, while Seahorse assays demonstrated a marked reduction in oxidative phosphorylation rates in RVVO cardiomyocytes. These findings collectively indicated that RVVO restricted mitochondrial metabolic maturation in the postnatal RV. Targeting mitochondrial metabolic maturation could offer a promising therapeutic strategy to mitigate RVVO-induced pathological remodeling.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Intractable & rare diseases research
Intractable & rare diseases research MEDICINE, GENERAL & INTERNAL-
CiteScore
2.10
自引率
0.00%
发文量
29
期刊最新文献
A bibliometric study of rare diseases in English and Chinese databases from 1985 to 2024 based on CiteSpace. A novel ETFDH mutation identified in a patient with riboflavin-responsive multiple acyl-CoA dehydrogenase deficiency. Evaluating the impact of mandibular developmental abnormalities and distraction osteogenesis on swallowing function in Pierre Robin Sequence. Herpes zoster central nervous system complication: An increasing trend of acute limbic encephalitis. miR-141-3p-loaded extracellular vesicles ameliorate intrahepatic bile duct stone disease by decreasing MUC5AC expression via the MAPK pathway.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1