丛枝菌根真菌对葡萄根茎的内生层影响很大,而土壤类型是一个关键因素。

IF 3.3 2区 生物学 Q2 MYCOLOGY Mycorrhiza Pub Date : 2025-03-05 DOI:10.1007/s00572-025-01194-8
K Štůsková, A Vavřiník, E Hakalová, J Čechová, D Gramaje, A Eichmeier
{"title":"丛枝菌根真菌对葡萄根茎的内生层影响很大,而土壤类型是一个关键因素。","authors":"K Štůsková, A Vavřiník, E Hakalová, J Čechová, D Gramaje, A Eichmeier","doi":"10.1007/s00572-025-01194-8","DOIUrl":null,"url":null,"abstract":"<p><p>Arbuscular mycorrhizal fungi (AMF) play a crucial role in enhancing the health and productivity of host plants, including grapevine. By forming symbiotic relationships with plant roots, AMF significantly improve water uptake and nutrient absorption, particularly phosphorus (P) and nitrogen (N). This study evaluated the microbiome composition and AMF colonization in the grapevine endorhizosphere across five wine-growing sub-regions in the Czech Republic. In all five sub-regions, in terms of composition of the fungal microbiome, the phyla Ascomycetes and Basidiomycetes were most numerous. Additionally, the study confirmed that LSU primers are more sensitive than ITS primers for AMF sequencing. While the representation of the phylum Glomeromycetes ranged from 0.07% to 5.65% in the ITS library, it was significantly higher, ranging from 83.74% to 98.71%, in the LSU library. The most significant difference compared to other sub-regions was observed in the Slovácko sub-region, where the soil had a low pH, a different texture (sandy loam), reduced micronutrient concentration, and low organic matter. The application of chemical plant protection products to grapevines also could have played a significant role, with 49 applications recorded in the Slovácko sub-region during the three years preceding sample collection. In other sub-regions, chemical treatments were conducted only 19-26 times. These factors resulted in only trace amounts of AMF being detected in Slovácko. Furthermore, it was demonstrated that AMF positively influenced the phosphorus concentration in the soil and reduced the presence of certain fungal pathogens.</p>","PeriodicalId":18965,"journal":{"name":"Mycorrhiza","volume":"35 2","pages":"17"},"PeriodicalIF":3.3000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11882661/pdf/","citationCount":"0","resultStr":"{\"title\":\"Arbuscular mycorrhizal fungi strongly influence the endorhizosphere of grapevine rootstock with soil type as a key factor.\",\"authors\":\"K Štůsková, A Vavřiník, E Hakalová, J Čechová, D Gramaje, A Eichmeier\",\"doi\":\"10.1007/s00572-025-01194-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Arbuscular mycorrhizal fungi (AMF) play a crucial role in enhancing the health and productivity of host plants, including grapevine. By forming symbiotic relationships with plant roots, AMF significantly improve water uptake and nutrient absorption, particularly phosphorus (P) and nitrogen (N). This study evaluated the microbiome composition and AMF colonization in the grapevine endorhizosphere across five wine-growing sub-regions in the Czech Republic. In all five sub-regions, in terms of composition of the fungal microbiome, the phyla Ascomycetes and Basidiomycetes were most numerous. Additionally, the study confirmed that LSU primers are more sensitive than ITS primers for AMF sequencing. While the representation of the phylum Glomeromycetes ranged from 0.07% to 5.65% in the ITS library, it was significantly higher, ranging from 83.74% to 98.71%, in the LSU library. The most significant difference compared to other sub-regions was observed in the Slovácko sub-region, where the soil had a low pH, a different texture (sandy loam), reduced micronutrient concentration, and low organic matter. The application of chemical plant protection products to grapevines also could have played a significant role, with 49 applications recorded in the Slovácko sub-region during the three years preceding sample collection. In other sub-regions, chemical treatments were conducted only 19-26 times. These factors resulted in only trace amounts of AMF being detected in Slovácko. Furthermore, it was demonstrated that AMF positively influenced the phosphorus concentration in the soil and reduced the presence of certain fungal pathogens.</p>\",\"PeriodicalId\":18965,\"journal\":{\"name\":\"Mycorrhiza\",\"volume\":\"35 2\",\"pages\":\"17\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-03-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11882661/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mycorrhiza\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s00572-025-01194-8\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MYCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mycorrhiza","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00572-025-01194-8","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MYCOLOGY","Score":null,"Total":0}
引用次数: 0
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Arbuscular mycorrhizal fungi strongly influence the endorhizosphere of grapevine rootstock with soil type as a key factor.

Arbuscular mycorrhizal fungi (AMF) play a crucial role in enhancing the health and productivity of host plants, including grapevine. By forming symbiotic relationships with plant roots, AMF significantly improve water uptake and nutrient absorption, particularly phosphorus (P) and nitrogen (N). This study evaluated the microbiome composition and AMF colonization in the grapevine endorhizosphere across five wine-growing sub-regions in the Czech Republic. In all five sub-regions, in terms of composition of the fungal microbiome, the phyla Ascomycetes and Basidiomycetes were most numerous. Additionally, the study confirmed that LSU primers are more sensitive than ITS primers for AMF sequencing. While the representation of the phylum Glomeromycetes ranged from 0.07% to 5.65% in the ITS library, it was significantly higher, ranging from 83.74% to 98.71%, in the LSU library. The most significant difference compared to other sub-regions was observed in the Slovácko sub-region, where the soil had a low pH, a different texture (sandy loam), reduced micronutrient concentration, and low organic matter. The application of chemical plant protection products to grapevines also could have played a significant role, with 49 applications recorded in the Slovácko sub-region during the three years preceding sample collection. In other sub-regions, chemical treatments were conducted only 19-26 times. These factors resulted in only trace amounts of AMF being detected in Slovácko. Furthermore, it was demonstrated that AMF positively influenced the phosphorus concentration in the soil and reduced the presence of certain fungal pathogens.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mycorrhiza
Mycorrhiza 生物-真菌学
CiteScore
8.20
自引率
2.60%
发文量
40
审稿时长
6-12 weeks
期刊介绍: Mycorrhiza is an international journal devoted to research into mycorrhizas - the widest symbioses in nature, involving plants and a range of soil fungi world-wide. The scope of Mycorrhiza covers all aspects of research into mycorrhizas, including molecular biology of the plants and fungi, fungal systematics, development and structure of mycorrhizas, and effects on plant physiology, productivity, reproduction and disease resistance. The scope also includes interactions between mycorrhizal fungi and other soil organisms and effects of mycorrhizas on plant biodiversity and ecosystem structure. Mycorrhiza contains original papers, short notes and review articles, along with commentaries and news items. It forms a platform for new concepts and discussions, and is a basis for a truly international forum of mycorrhizologists from all over the world.
期刊最新文献
Morphological spore-based characterisation and molecular approaches reveal comparable patterns in glomeromycotan communities. Unlocking germination: the role of mycorrhizal strain and seed provenance in driving seed germination of a widespread terrestrial orchid. Arbuscular mycorrhizal fungi strongly influence the endorhizosphere of grapevine rootstock with soil type as a key factor. Synonymization of three species of Rhizophagus based on morphological and molecular evidence and biogeography of Rhizophagus clarus. The synergistic effect of Rhizophagus irregularis and Biochar on the growth of Switchgrass under sodium-saline-alkali stress: insights from soil mechanical property analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1