IF 9.6 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Nano Letters Pub Date : 2025-03-10 DOI:10.1021/acs.nanolett.5c00564
Zhicong Liu, Jianming Tao, Han Jiang, Yubing Wu, Liang Lin, Yanmin Yang, Yue Chen, Zhigao Huang, Yingbin Lin
{"title":"Deciphering Interfacial Stability of Sulfide and Halide-Based Electrolytes via Operando X-ray Photoelectron Spectroscopy","authors":"Zhicong Liu, Jianming Tao, Han Jiang, Yubing Wu, Liang Lin, Yanmin Yang, Yue Chen, Zhigao Huang, Yingbin Lin","doi":"10.1021/acs.nanolett.5c00564","DOIUrl":null,"url":null,"abstract":"Combined solid electrolytes address cathode-anode compatibility in all-solid-state Li-ion batteries (ASSLBs), yet interface stability and ion transport mechanisms between different electrolytes remain unclear. Herein, we investigate Li<sub>6</sub>PS<sub>5</sub>Cl (LPSC), Li<sub>3</sub>InCl<sub>6</sub> (LIC), and Li<sub>1.75</sub>ZrO<sub>0.5</sub>Cl<sub>4.75</sub> (LZOC) composite electrolytes through electrochemical analysis and operando X-ray photoelectron spectroscopy. Our results reveal that the electrostatic potential difference between LPSC and LIC inhibits Li<sup>+</sup> migration, leading to the decomposition of LIC into InCl<sub>3</sub> and LiCl, causing battery failure. In contrast, LZOC forms an oxygen-rich interphase with LiCoO<sub>2</sub> (LCO), showing better interfacial stability. The electrostatic potential difference between LZOC and LPSC promotes Li<sup>+</sup> diffusion, maintaining interface stability even as LPSC decomposes, thereby preventing severe degradation of LZOC. Therefore, the LCO-LZOC composite cathode exhibits better electrochemical performance than LCO-LIC. This study elucidates the basic mechanism of interfacial reaction and ion diffusion in sulfide–halide electrolytes and emphasizes the key role of electrolyte compatibility in ASSLBs failure pathways.","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":"48 1","pages":""},"PeriodicalIF":9.6000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.nanolett.5c00564","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

复合固体电解质解决了全固态锂离子电池(ASSLB)中阴阳极的兼容性问题,但不同电解质之间的界面稳定性和离子传输机制仍不清楚。在此,我们通过电化学分析和操作X射线光电子能谱研究了Li6PS5Cl(LPSC)、Li3InCl6(LIC)和Li1.75ZrO0.5Cl4.75(LZOC)复合电解质。我们的研究结果表明,LPSC 和 LIC 之间的静电电位差抑制了 Li+ 的迁移,导致 LIC 分解成 InCl3 和 LiCl,从而导致电池失效。相反,LZOC 与钴酸锂(LCO)形成富氧相间,显示出更好的界面稳定性。LZOC 和 LPSC 之间的静电电位差可促进 Li+ 扩散,即使 LPSC 分解也能保持界面稳定,从而防止 LZOC 严重降解。因此,LCO-LZOC 复合阴极的电化学性能优于 LCO-LIC。这项研究阐明了硫化物-卤化物电解质中界面反应和离子扩散的基本机制,并强调了电解质相容性在 ASSLB 失效途径中的关键作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Deciphering Interfacial Stability of Sulfide and Halide-Based Electrolytes via Operando X-ray Photoelectron Spectroscopy
Combined solid electrolytes address cathode-anode compatibility in all-solid-state Li-ion batteries (ASSLBs), yet interface stability and ion transport mechanisms between different electrolytes remain unclear. Herein, we investigate Li6PS5Cl (LPSC), Li3InCl6 (LIC), and Li1.75ZrO0.5Cl4.75 (LZOC) composite electrolytes through electrochemical analysis and operando X-ray photoelectron spectroscopy. Our results reveal that the electrostatic potential difference between LPSC and LIC inhibits Li+ migration, leading to the decomposition of LIC into InCl3 and LiCl, causing battery failure. In contrast, LZOC forms an oxygen-rich interphase with LiCoO2 (LCO), showing better interfacial stability. The electrostatic potential difference between LZOC and LPSC promotes Li+ diffusion, maintaining interface stability even as LPSC decomposes, thereby preventing severe degradation of LZOC. Therefore, the LCO-LZOC composite cathode exhibits better electrochemical performance than LCO-LIC. This study elucidates the basic mechanism of interfacial reaction and ion diffusion in sulfide–halide electrolytes and emphasizes the key role of electrolyte compatibility in ASSLBs failure pathways.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nano Letters
Nano Letters 工程技术-材料科学:综合
CiteScore
16.80
自引率
2.80%
发文量
1182
审稿时长
1.4 months
期刊介绍: Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including: - Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale - Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies - Modeling and simulation of synthetic, assembly, and interaction processes - Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance - Applications of nanoscale materials in living and environmental systems Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.
期刊最新文献
Anion-Regulated Solvation Structure and Electrode Interface toward Rechargeable Magnesium Batteries Tailoring Phonon Polaritons with a Single-Layer Photonics-Empowered Polaritonic Crystal Modulated-Illumination Intermittent-Contact Tip-Enhanced Raman Spectroscopy Issue Publication Information Issue Editorial Masthead
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1