Y 染色体连锁UTY调节瓣膜成纤维细胞甲基化的性别差异,以响应纳米级细胞外基质线索

IF 11.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Science Advances Pub Date : 2025-03-12 DOI:10.1126/sciadv.ads5717
Rayyan M. Gorashi, Talia Baddour, Sarah J. Chittle, Nicole E. Félix Vélez, Michaela A. Wenning, Kristi S. Anseth, Luisa Mestroni, Brisa Peña, Peng Guo, Brian A. Aguado
{"title":"Y 染色体连锁UTY调节瓣膜成纤维细胞甲基化的性别差异,以响应纳米级细胞外基质线索","authors":"Rayyan M. Gorashi, Talia Baddour, Sarah J. Chittle, Nicole E. Félix Vélez, Michaela A. Wenning, Kristi S. Anseth, Luisa Mestroni, Brisa Peña, Peng Guo, Brian A. Aguado","doi":"10.1126/sciadv.ads5717","DOIUrl":null,"url":null,"abstract":"Aortic valve stenosis (AVS) is a progressive disease, wherein males more often develop valve calcification relative to females that develop valve fibrosis. Valvular interstitial cells (VICs) aberrantly activate to myofibroblasts during AVS, driving the fibrotic valve phenotype in females. Myofibroblasts further differentiate into osteoblast-like cells and produce calcium nanoparticles, driving valve calcification in males. We hypothesized that the lysine demethylase UTY (ubiquitously transcribed tetratricopeptide repeat containing Y-linked) decreases methylation uniquely in male VICs responding to nanoscale extracellular matrix cues to promote an osteoblast-like cell phenotype. Here, we describe a hydrogel biomaterial cell culture platform to interrogate how nanoscale cues modulate sex-specific methylation states in VICs activating to myofibroblasts and osteoblast-like cells. We found that UTY modulates the osteoblast-like cell phenotype in response to nanoscale cues uniquely in male VICs. Overall, we reveal a previously unidentified role of UTY in the regulation of calcification processes in males during AVS progression.","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"54 1","pages":""},"PeriodicalIF":11.7000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Y chromosome–linked UTY modulates sex differences in valvular fibroblast methylation in response to nanoscale extracellular matrix cues\",\"authors\":\"Rayyan M. Gorashi, Talia Baddour, Sarah J. Chittle, Nicole E. Félix Vélez, Michaela A. Wenning, Kristi S. Anseth, Luisa Mestroni, Brisa Peña, Peng Guo, Brian A. Aguado\",\"doi\":\"10.1126/sciadv.ads5717\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Aortic valve stenosis (AVS) is a progressive disease, wherein males more often develop valve calcification relative to females that develop valve fibrosis. Valvular interstitial cells (VICs) aberrantly activate to myofibroblasts during AVS, driving the fibrotic valve phenotype in females. Myofibroblasts further differentiate into osteoblast-like cells and produce calcium nanoparticles, driving valve calcification in males. We hypothesized that the lysine demethylase UTY (ubiquitously transcribed tetratricopeptide repeat containing Y-linked) decreases methylation uniquely in male VICs responding to nanoscale extracellular matrix cues to promote an osteoblast-like cell phenotype. Here, we describe a hydrogel biomaterial cell culture platform to interrogate how nanoscale cues modulate sex-specific methylation states in VICs activating to myofibroblasts and osteoblast-like cells. We found that UTY modulates the osteoblast-like cell phenotype in response to nanoscale cues uniquely in male VICs. Overall, we reveal a previously unidentified role of UTY in the regulation of calcification processes in males during AVS progression.\",\"PeriodicalId\":21609,\"journal\":{\"name\":\"Science Advances\",\"volume\":\"54 1\",\"pages\":\"\"},\"PeriodicalIF\":11.7000,\"publicationDate\":\"2025-03-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science Advances\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1126/sciadv.ads5717\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1126/sciadv.ads5717","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Y chromosome–linked UTY modulates sex differences in valvular fibroblast methylation in response to nanoscale extracellular matrix cues
Aortic valve stenosis (AVS) is a progressive disease, wherein males more often develop valve calcification relative to females that develop valve fibrosis. Valvular interstitial cells (VICs) aberrantly activate to myofibroblasts during AVS, driving the fibrotic valve phenotype in females. Myofibroblasts further differentiate into osteoblast-like cells and produce calcium nanoparticles, driving valve calcification in males. We hypothesized that the lysine demethylase UTY (ubiquitously transcribed tetratricopeptide repeat containing Y-linked) decreases methylation uniquely in male VICs responding to nanoscale extracellular matrix cues to promote an osteoblast-like cell phenotype. Here, we describe a hydrogel biomaterial cell culture platform to interrogate how nanoscale cues modulate sex-specific methylation states in VICs activating to myofibroblasts and osteoblast-like cells. We found that UTY modulates the osteoblast-like cell phenotype in response to nanoscale cues uniquely in male VICs. Overall, we reveal a previously unidentified role of UTY in the regulation of calcification processes in males during AVS progression.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Science Advances
Science Advances 综合性期刊-综合性期刊
CiteScore
21.40
自引率
1.50%
发文量
1937
审稿时长
29 weeks
期刊介绍: Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.
期刊最新文献
Shear flow patterns antimicrobial gradients across bacterial populations Y chromosome–linked UTY modulates sex differences in valvular fibroblast methylation in response to nanoscale extracellular matrix cues Liquid-bodied antibiofilm robot with switchable viscoelastic response for biofilm eradication on complex surface topographies Active restoration of a long-lived octocoral drives rapid functional recovery in a temperate reef Oxygen-excluded nanoimaging of polymer blend films
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1