Shaojun Wu, Shan Jin, Dingding Wen, Donghong Han, Xiaoting Wang
{"title":"连续行动空间中的量子强化学习","authors":"Shaojun Wu, Shan Jin, Dingding Wen, Donghong Han, Xiaoting Wang","doi":"10.22331/q-2025-03-12-1660","DOIUrl":null,"url":null,"abstract":"Quantum reinforcement learning (QRL) is a promising paradigm for near-term quantum devices. While existing QRL methods have shown success in discrete action spaces, extending these techniques to continuous domains is challenging due to the curse of dimensionality introduced by discretization. To overcome this limitation, we introduce a quantum Deep Deterministic Policy Gradient (DDPG) algorithm that efficiently addresses both classical and quantum sequential decision problems in continuous action spaces. Moreover, our approach facilitates single-shot quantum state generation: a one-time optimization produces a model that outputs the control sequence required to drive a fixed initial state to any desired target state. In contrast, conventional quantum control methods demand separate optimization for each target state. We demonstrate the effectiveness of our method through simulations and discuss its potential applications in quantum control.","PeriodicalId":20807,"journal":{"name":"Quantum","volume":"30 1","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantum reinforcement learning in continuous action space\",\"authors\":\"Shaojun Wu, Shan Jin, Dingding Wen, Donghong Han, Xiaoting Wang\",\"doi\":\"10.22331/q-2025-03-12-1660\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Quantum reinforcement learning (QRL) is a promising paradigm for near-term quantum devices. While existing QRL methods have shown success in discrete action spaces, extending these techniques to continuous domains is challenging due to the curse of dimensionality introduced by discretization. To overcome this limitation, we introduce a quantum Deep Deterministic Policy Gradient (DDPG) algorithm that efficiently addresses both classical and quantum sequential decision problems in continuous action spaces. Moreover, our approach facilitates single-shot quantum state generation: a one-time optimization produces a model that outputs the control sequence required to drive a fixed initial state to any desired target state. In contrast, conventional quantum control methods demand separate optimization for each target state. We demonstrate the effectiveness of our method through simulations and discuss its potential applications in quantum control.\",\"PeriodicalId\":20807,\"journal\":{\"name\":\"Quantum\",\"volume\":\"30 1\",\"pages\":\"\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2025-03-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quantum\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.22331/q-2025-03-12-1660\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.22331/q-2025-03-12-1660","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Quantum reinforcement learning in continuous action space
Quantum reinforcement learning (QRL) is a promising paradigm for near-term quantum devices. While existing QRL methods have shown success in discrete action spaces, extending these techniques to continuous domains is challenging due to the curse of dimensionality introduced by discretization. To overcome this limitation, we introduce a quantum Deep Deterministic Policy Gradient (DDPG) algorithm that efficiently addresses both classical and quantum sequential decision problems in continuous action spaces. Moreover, our approach facilitates single-shot quantum state generation: a one-time optimization produces a model that outputs the control sequence required to drive a fixed initial state to any desired target state. In contrast, conventional quantum control methods demand separate optimization for each target state. We demonstrate the effectiveness of our method through simulations and discuss its potential applications in quantum control.
QuantumPhysics and Astronomy-Physics and Astronomy (miscellaneous)
CiteScore
9.20
自引率
10.90%
发文量
241
审稿时长
16 weeks
期刊介绍:
Quantum is an open-access peer-reviewed journal for quantum science and related fields. Quantum is non-profit and community-run: an effort by researchers and for researchers to make science more open and publishing more transparent and efficient.