连续行动空间中的量子强化学习

IF 5.1 2区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Quantum Pub Date : 2025-03-12 DOI:10.22331/q-2025-03-12-1660
Shaojun Wu, Shan Jin, Dingding Wen, Donghong Han, Xiaoting Wang
{"title":"连续行动空间中的量子强化学习","authors":"Shaojun Wu, Shan Jin, Dingding Wen, Donghong Han, Xiaoting Wang","doi":"10.22331/q-2025-03-12-1660","DOIUrl":null,"url":null,"abstract":"Quantum reinforcement learning (QRL) is a promising paradigm for near-term quantum devices. While existing QRL methods have shown success in discrete action spaces, extending these techniques to continuous domains is challenging due to the curse of dimensionality introduced by discretization. To overcome this limitation, we introduce a quantum Deep Deterministic Policy Gradient (DDPG) algorithm that efficiently addresses both classical and quantum sequential decision problems in continuous action spaces. Moreover, our approach facilitates single-shot quantum state generation: a one-time optimization produces a model that outputs the control sequence required to drive a fixed initial state to any desired target state. In contrast, conventional quantum control methods demand separate optimization for each target state. We demonstrate the effectiveness of our method through simulations and discuss its potential applications in quantum control.","PeriodicalId":20807,"journal":{"name":"Quantum","volume":"30 1","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantum reinforcement learning in continuous action space\",\"authors\":\"Shaojun Wu, Shan Jin, Dingding Wen, Donghong Han, Xiaoting Wang\",\"doi\":\"10.22331/q-2025-03-12-1660\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Quantum reinforcement learning (QRL) is a promising paradigm for near-term quantum devices. While existing QRL methods have shown success in discrete action spaces, extending these techniques to continuous domains is challenging due to the curse of dimensionality introduced by discretization. To overcome this limitation, we introduce a quantum Deep Deterministic Policy Gradient (DDPG) algorithm that efficiently addresses both classical and quantum sequential decision problems in continuous action spaces. Moreover, our approach facilitates single-shot quantum state generation: a one-time optimization produces a model that outputs the control sequence required to drive a fixed initial state to any desired target state. In contrast, conventional quantum control methods demand separate optimization for each target state. We demonstrate the effectiveness of our method through simulations and discuss its potential applications in quantum control.\",\"PeriodicalId\":20807,\"journal\":{\"name\":\"Quantum\",\"volume\":\"30 1\",\"pages\":\"\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2025-03-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quantum\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.22331/q-2025-03-12-1660\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.22331/q-2025-03-12-1660","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Quantum reinforcement learning in continuous action space
Quantum reinforcement learning (QRL) is a promising paradigm for near-term quantum devices. While existing QRL methods have shown success in discrete action spaces, extending these techniques to continuous domains is challenging due to the curse of dimensionality introduced by discretization. To overcome this limitation, we introduce a quantum Deep Deterministic Policy Gradient (DDPG) algorithm that efficiently addresses both classical and quantum sequential decision problems in continuous action spaces. Moreover, our approach facilitates single-shot quantum state generation: a one-time optimization produces a model that outputs the control sequence required to drive a fixed initial state to any desired target state. In contrast, conventional quantum control methods demand separate optimization for each target state. We demonstrate the effectiveness of our method through simulations and discuss its potential applications in quantum control.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Quantum
Quantum Physics and Astronomy-Physics and Astronomy (miscellaneous)
CiteScore
9.20
自引率
10.90%
发文量
241
审稿时长
16 weeks
期刊介绍: Quantum is an open-access peer-reviewed journal for quantum science and related fields. Quantum is non-profit and community-run: an effort by researchers and for researchers to make science more open and publishing more transparent and efficient.
期刊最新文献
Trade-off relations between measurement dependence and hiddenness for separable hidden variable models Platonic dynamical decoupling sequences for interacting spin systems Quantum reinforcement learning in continuous action space Optimizing Gate Decomposition for High-Level Quantum Programming Quantum key distribution rates from non-symmetric conic optimization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1