{"title":"An inertial stochastic Bregman generalized alternating direction method of multipliers for nonconvex and nonsmooth optimization","authors":"Longhui Liu, Congying Han, Tiande Guo, Shichen Liao","doi":"10.1016/j.eswa.2025.126939","DOIUrl":null,"url":null,"abstract":"<div><div>The alternating direction method of multipliers (ADMM) is a widely employed first-order method due to its efficiency and simplicity. Nonetheless, like other splitting methods, ADMM’s performance degrades substantially as the scale of the optimization problems it addresses increases. This work is devoted to studying an accelerated stochastic generalized ADMM framework with a class of variance-reduced gradient estimators for solving large-scale nonconvex nonsmooth optimization problems with linear constraints, in which we combine inertial technique and Bregman distance. Under the assumption that the objective functions are semi-algebraic which satisfies the Kurdyka–Łojasiewicz (KL) property, we establish the global convergence and convergence rate of the sequence generated by our proposed algorithm. Finally, numerical experiments on conducting a graph-guided fused lasso illustrates the efficiency of the proposed method.</div></div>","PeriodicalId":50461,"journal":{"name":"Expert Systems with Applications","volume":"276 ","pages":"Article 126939"},"PeriodicalIF":7.5000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expert Systems with Applications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0957417425005615","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
An inertial stochastic Bregman generalized alternating direction method of multipliers for nonconvex and nonsmooth optimization
The alternating direction method of multipliers (ADMM) is a widely employed first-order method due to its efficiency and simplicity. Nonetheless, like other splitting methods, ADMM’s performance degrades substantially as the scale of the optimization problems it addresses increases. This work is devoted to studying an accelerated stochastic generalized ADMM framework with a class of variance-reduced gradient estimators for solving large-scale nonconvex nonsmooth optimization problems with linear constraints, in which we combine inertial technique and Bregman distance. Under the assumption that the objective functions are semi-algebraic which satisfies the Kurdyka–Łojasiewicz (KL) property, we establish the global convergence and convergence rate of the sequence generated by our proposed algorithm. Finally, numerical experiments on conducting a graph-guided fused lasso illustrates the efficiency of the proposed method.
期刊介绍:
Expert Systems With Applications is an international journal dedicated to the exchange of information on expert and intelligent systems used globally in industry, government, and universities. The journal emphasizes original papers covering the design, development, testing, implementation, and management of these systems, offering practical guidelines. It spans various sectors such as finance, engineering, marketing, law, project management, information management, medicine, and more. The journal also welcomes papers on multi-agent systems, knowledge management, neural networks, knowledge discovery, data mining, and other related areas, excluding applications to military/defense systems.