蒙脱石纳米孔隙中甲烷与气相全氟烷基和多氟烷基物质的竞争性吸附和扩散:对环境的影响

IF 7.1 2区 环境科学与生态学 Q1 ENGINEERING, ENVIRONMENTAL Waste management Pub Date : 2025-03-14 DOI:10.1016/j.wasman.2025.114746
Rui Xu , Qiao Wang , Fusheng Zha , Jiawei Wu , Bokade Mrunal Sunil Shobha , Devendra Narain Singh
{"title":"蒙脱石纳米孔隙中甲烷与气相全氟烷基和多氟烷基物质的竞争性吸附和扩散:对环境的影响","authors":"Rui Xu ,&nbsp;Qiao Wang ,&nbsp;Fusheng Zha ,&nbsp;Jiawei Wu ,&nbsp;Bokade Mrunal Sunil Shobha ,&nbsp;Devendra Narain Singh","doi":"10.1016/j.wasman.2025.114746","DOIUrl":null,"url":null,"abstract":"<div><div>Vapor-phase perfluoroalkyl and polyfluoroalkyl substances (PFASs), along with methane emissions from landfills has been key contributors of their atmospheric transport and global distribution. Given the persistence, bioaccumulation, and potential health risks associated with PFAS, understanding their transport behavior in landfill gas barrier is of paramount importance. To gain a deeper understanding of the adsorption and diffusion behavior of vapor-phase PFAS in unsaturated, montmorillonite-rich clay barriers, a molecular dynamics simulation was conducted. A 5-nm montmorillonite nanopore incorporating vapor-phase PFAS (Fluorotelomer alcohol, FTOH), methane, and water molecules was modeled considering the interactions between these species. The results indicate that the presence of methane within the montmorillonite system inhibits the diffusion of both water and FTOH. Additionally, methane competes with FTOH for sorption sites, particularly at low moisture content. At 5 % moisture content, the adsorption density peak of methane is 1.5 times greater than that of FTOH due to stronger van der Waals interactions between methane and montmorillonite. However, as moisture content increases, methane adsorption weakens and becomes more dispersed within the montmorillonite pores. In contrast, FTOH retains a distinct adsorption region at 20 % moisture content, exhibiting a density peak of 0.025 g/cm<sup>3</sup> that shifts farther from the montmorillonite surface. At high moisture content, FTOH aggregates due to the hydrophobicity of its C-F tail. These findings provide critical insights into the environmental behavior of volatile PFASs and have important implications for the design and optimization of landfill gas barriers.</div></div>","PeriodicalId":23969,"journal":{"name":"Waste management","volume":"200 ","pages":"Article 114746"},"PeriodicalIF":7.1000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Competitive adsorption and diffusion of methane and vapor-phase per- and polyfluoroalkyl substances in montmorillonite nano pores: Environmental implications\",\"authors\":\"Rui Xu ,&nbsp;Qiao Wang ,&nbsp;Fusheng Zha ,&nbsp;Jiawei Wu ,&nbsp;Bokade Mrunal Sunil Shobha ,&nbsp;Devendra Narain Singh\",\"doi\":\"10.1016/j.wasman.2025.114746\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Vapor-phase perfluoroalkyl and polyfluoroalkyl substances (PFASs), along with methane emissions from landfills has been key contributors of their atmospheric transport and global distribution. Given the persistence, bioaccumulation, and potential health risks associated with PFAS, understanding their transport behavior in landfill gas barrier is of paramount importance. To gain a deeper understanding of the adsorption and diffusion behavior of vapor-phase PFAS in unsaturated, montmorillonite-rich clay barriers, a molecular dynamics simulation was conducted. A 5-nm montmorillonite nanopore incorporating vapor-phase PFAS (Fluorotelomer alcohol, FTOH), methane, and water molecules was modeled considering the interactions between these species. The results indicate that the presence of methane within the montmorillonite system inhibits the diffusion of both water and FTOH. Additionally, methane competes with FTOH for sorption sites, particularly at low moisture content. At 5 % moisture content, the adsorption density peak of methane is 1.5 times greater than that of FTOH due to stronger van der Waals interactions between methane and montmorillonite. However, as moisture content increases, methane adsorption weakens and becomes more dispersed within the montmorillonite pores. In contrast, FTOH retains a distinct adsorption region at 20 % moisture content, exhibiting a density peak of 0.025 g/cm<sup>3</sup> that shifts farther from the montmorillonite surface. At high moisture content, FTOH aggregates due to the hydrophobicity of its C-F tail. These findings provide critical insights into the environmental behavior of volatile PFASs and have important implications for the design and optimization of landfill gas barriers.</div></div>\",\"PeriodicalId\":23969,\"journal\":{\"name\":\"Waste management\",\"volume\":\"200 \",\"pages\":\"Article 114746\"},\"PeriodicalIF\":7.1000,\"publicationDate\":\"2025-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Waste management\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0956053X25001515\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Waste management","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0956053X25001515","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Competitive adsorption and diffusion of methane and vapor-phase per- and polyfluoroalkyl substances in montmorillonite nano pores: Environmental implications
Vapor-phase perfluoroalkyl and polyfluoroalkyl substances (PFASs), along with methane emissions from landfills has been key contributors of their atmospheric transport and global distribution. Given the persistence, bioaccumulation, and potential health risks associated with PFAS, understanding their transport behavior in landfill gas barrier is of paramount importance. To gain a deeper understanding of the adsorption and diffusion behavior of vapor-phase PFAS in unsaturated, montmorillonite-rich clay barriers, a molecular dynamics simulation was conducted. A 5-nm montmorillonite nanopore incorporating vapor-phase PFAS (Fluorotelomer alcohol, FTOH), methane, and water molecules was modeled considering the interactions between these species. The results indicate that the presence of methane within the montmorillonite system inhibits the diffusion of both water and FTOH. Additionally, methane competes with FTOH for sorption sites, particularly at low moisture content. At 5 % moisture content, the adsorption density peak of methane is 1.5 times greater than that of FTOH due to stronger van der Waals interactions between methane and montmorillonite. However, as moisture content increases, methane adsorption weakens and becomes more dispersed within the montmorillonite pores. In contrast, FTOH retains a distinct adsorption region at 20 % moisture content, exhibiting a density peak of 0.025 g/cm3 that shifts farther from the montmorillonite surface. At high moisture content, FTOH aggregates due to the hydrophobicity of its C-F tail. These findings provide critical insights into the environmental behavior of volatile PFASs and have important implications for the design and optimization of landfill gas barriers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Waste management
Waste management 环境科学-工程:环境
CiteScore
15.60
自引率
6.20%
发文量
492
审稿时长
39 days
期刊介绍: Waste Management is devoted to the presentation and discussion of information on solid wastes,it covers the entire lifecycle of solid. wastes. Scope: Addresses solid wastes in both industrialized and economically developing countries Covers various types of solid wastes, including: Municipal (e.g., residential, institutional, commercial, light industrial) Agricultural Special (e.g., C and D, healthcare, household hazardous wastes, sewage sludge)
期刊最新文献
Modelling anaerobic digestion of agricultural waste: From lab to full scale Sustainable biomass processing: Optimizing energy efficiency through ash waste heat recovery for fuels dewatering Enhancing operational efficiency in a voluntary recycling project through data-driven waste collection optimization Machine learning-assisted prediction of gas production during co-pyrolysis of biomass and waste plastics Upcycling textile derived microplastics waste collected from washer and dryers to carbonaceous products using hydrothermal carbonization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1