Mark Alaverdian, Zvi Bern, Dimitrios Kosmopoulos, Andres Luna, Radu Roiban, Trevor Scheopner, Fei Teng
{"title":"广义相对论轨道演化中的自旋-磁性守恒变化","authors":"Mark Alaverdian, Zvi Bern, Dimitrios Kosmopoulos, Andres Luna, Radu Roiban, Trevor Scheopner, Fei Teng","doi":"10.1103/physrevlett.134.101602","DOIUrl":null,"url":null,"abstract":"We show that physical scattering observables for compact spinning objects in general relativity can depend on additional degrees of freedom in the spin tensor beyond those described by the spin vector alone. The impulse, spin kick, and leading-order waveforms exhibit such a nontrivial dependence. A signal of this additional structure is the change in the magnitude of the spin vector under conservative Hamiltonian evolution, similar to our previous studies in electrodynamics. These additional degrees of freedom describe dynamical mass multipoles of compact objects and decouple for black holes. We also show that the conservative impulse, spin kick, and change of the additional degrees of freedom are encoded in the eikonal phase. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20069,"journal":{"name":"Physical review letters","volume":"17 1","pages":""},"PeriodicalIF":8.1000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Conservative Spin-Magnitude Change in Orbital Evolution in General Relativity\",\"authors\":\"Mark Alaverdian, Zvi Bern, Dimitrios Kosmopoulos, Andres Luna, Radu Roiban, Trevor Scheopner, Fei Teng\",\"doi\":\"10.1103/physrevlett.134.101602\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show that physical scattering observables for compact spinning objects in general relativity can depend on additional degrees of freedom in the spin tensor beyond those described by the spin vector alone. The impulse, spin kick, and leading-order waveforms exhibit such a nontrivial dependence. A signal of this additional structure is the change in the magnitude of the spin vector under conservative Hamiltonian evolution, similar to our previous studies in electrodynamics. These additional degrees of freedom describe dynamical mass multipoles of compact objects and decouple for black holes. We also show that the conservative impulse, spin kick, and change of the additional degrees of freedom are encoded in the eikonal phase. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>\",\"PeriodicalId\":20069,\"journal\":{\"name\":\"Physical review letters\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2025-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical review letters\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevlett.134.101602\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical review letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevlett.134.101602","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Conservative Spin-Magnitude Change in Orbital Evolution in General Relativity
We show that physical scattering observables for compact spinning objects in general relativity can depend on additional degrees of freedom in the spin tensor beyond those described by the spin vector alone. The impulse, spin kick, and leading-order waveforms exhibit such a nontrivial dependence. A signal of this additional structure is the change in the magnitude of the spin vector under conservative Hamiltonian evolution, similar to our previous studies in electrodynamics. These additional degrees of freedom describe dynamical mass multipoles of compact objects and decouple for black holes. We also show that the conservative impulse, spin kick, and change of the additional degrees of freedom are encoded in the eikonal phase. Published by the American Physical Society2025
期刊介绍:
Physical review letters(PRL)covers the full range of applied, fundamental, and interdisciplinary physics research topics:
General physics, including statistical and quantum mechanics and quantum information
Gravitation, astrophysics, and cosmology
Elementary particles and fields
Nuclear physics
Atomic, molecular, and optical physics
Nonlinear dynamics, fluid dynamics, and classical optics
Plasma and beam physics
Condensed matter and materials physics
Polymers, soft matter, biological, climate and interdisciplinary physics, including networks