Roberta Miroglio, Roberta Nugnes, Lisa Zanetti, Marco Faimali, Chiara Gambardella
{"title":"环境中氟西汀抗抑郁剂的浓度对海胆Paracentrotus lividus早期发育的影响","authors":"Roberta Miroglio, Roberta Nugnes, Lisa Zanetti, Marco Faimali, Chiara Gambardella","doi":"10.1016/j.marenvres.2025.107080","DOIUrl":null,"url":null,"abstract":"<div><div>Fluoxetine (FLX), one of the most widely prescribed selective serotonin reuptake inhibitors, is frequently detected in the aquatic environment. In this study we assessed the ecotoxicological effects of FLX on the early life-stages of the sea urchin <em>Paracentrotus lividus,</em> a key species in the Mediterranean Sea. Fertilization rate, developmental anomalies and behavioural alterations were evaluated up to 72 h by exposing gametes, zygotes, and embryos (gastrula) to environmental (0.001, 0.01 mg/L) and high concentrations (0.1, 1, 10 mg/L). Further, the different types and frequency of morphological anomalies at larval level were classified to estimate the Index of Contaminant Impact (ICI) at relevant and high concentrations. The ICI was applied to predict which FLX concentrations may pose a risk to sea urchins. Although FLX did not affect fertilization, significant skeletal anomalies and behavioural alterations were found in plutei from each exposed stage. Based on EC50 values, the sensitivity level ranks as follows: zygote > gastrula > sperm. The ICI values indicated high and moderate impacts only at high concentrations. However, a slight impact was also found in plutei from zygote exposure at relevant environmental concentrations, highlighting a potential risk for sea urchin early development. Considering increasing FLX consumption, we suggest to include this PC in monitoring plans, to not exceed levels that may impair and severely affect the early developmental stages of echinoderms. In addition, our findings promote the use of ICI as a novel tool for FLX impact assessment.</div></div>","PeriodicalId":18204,"journal":{"name":"Marine environmental research","volume":"207 ","pages":"Article 107080"},"PeriodicalIF":3.0000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Environmental concentrations of fluoxetine antidepressant affect early development of sea urchin Paracentrotus lividus\",\"authors\":\"Roberta Miroglio, Roberta Nugnes, Lisa Zanetti, Marco Faimali, Chiara Gambardella\",\"doi\":\"10.1016/j.marenvres.2025.107080\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Fluoxetine (FLX), one of the most widely prescribed selective serotonin reuptake inhibitors, is frequently detected in the aquatic environment. In this study we assessed the ecotoxicological effects of FLX on the early life-stages of the sea urchin <em>Paracentrotus lividus,</em> a key species in the Mediterranean Sea. Fertilization rate, developmental anomalies and behavioural alterations were evaluated up to 72 h by exposing gametes, zygotes, and embryos (gastrula) to environmental (0.001, 0.01 mg/L) and high concentrations (0.1, 1, 10 mg/L). Further, the different types and frequency of morphological anomalies at larval level were classified to estimate the Index of Contaminant Impact (ICI) at relevant and high concentrations. The ICI was applied to predict which FLX concentrations may pose a risk to sea urchins. Although FLX did not affect fertilization, significant skeletal anomalies and behavioural alterations were found in plutei from each exposed stage. Based on EC50 values, the sensitivity level ranks as follows: zygote > gastrula > sperm. The ICI values indicated high and moderate impacts only at high concentrations. However, a slight impact was also found in plutei from zygote exposure at relevant environmental concentrations, highlighting a potential risk for sea urchin early development. Considering increasing FLX consumption, we suggest to include this PC in monitoring plans, to not exceed levels that may impair and severely affect the early developmental stages of echinoderms. In addition, our findings promote the use of ICI as a novel tool for FLX impact assessment.</div></div>\",\"PeriodicalId\":18204,\"journal\":{\"name\":\"Marine environmental research\",\"volume\":\"207 \",\"pages\":\"Article 107080\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-03-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Marine environmental research\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0141113625001370\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Marine environmental research","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141113625001370","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Environmental concentrations of fluoxetine antidepressant affect early development of sea urchin Paracentrotus lividus
Fluoxetine (FLX), one of the most widely prescribed selective serotonin reuptake inhibitors, is frequently detected in the aquatic environment. In this study we assessed the ecotoxicological effects of FLX on the early life-stages of the sea urchin Paracentrotus lividus, a key species in the Mediterranean Sea. Fertilization rate, developmental anomalies and behavioural alterations were evaluated up to 72 h by exposing gametes, zygotes, and embryos (gastrula) to environmental (0.001, 0.01 mg/L) and high concentrations (0.1, 1, 10 mg/L). Further, the different types and frequency of morphological anomalies at larval level were classified to estimate the Index of Contaminant Impact (ICI) at relevant and high concentrations. The ICI was applied to predict which FLX concentrations may pose a risk to sea urchins. Although FLX did not affect fertilization, significant skeletal anomalies and behavioural alterations were found in plutei from each exposed stage. Based on EC50 values, the sensitivity level ranks as follows: zygote > gastrula > sperm. The ICI values indicated high and moderate impacts only at high concentrations. However, a slight impact was also found in plutei from zygote exposure at relevant environmental concentrations, highlighting a potential risk for sea urchin early development. Considering increasing FLX consumption, we suggest to include this PC in monitoring plans, to not exceed levels that may impair and severely affect the early developmental stages of echinoderms. In addition, our findings promote the use of ICI as a novel tool for FLX impact assessment.
期刊介绍:
Marine Environmental Research publishes original research papers on chemical, physical, and biological interactions in the oceans and coastal waters. The journal serves as a forum for new information on biology, chemistry, and toxicology and syntheses that advance understanding of marine environmental processes.
Submission of multidisciplinary studies is encouraged. Studies that utilize experimental approaches to clarify the roles of anthropogenic and natural causes of changes in marine ecosystems are especially welcome, as are those studies that represent new developments of a theoretical or conceptual aspect of marine science. All papers published in this journal are reviewed by qualified peers prior to acceptance and publication. Examples of topics considered to be appropriate for the journal include, but are not limited to, the following:
– The extent, persistence, and consequences of change and the recovery from such change in natural marine systems
– The biochemical, physiological, and ecological consequences of contaminants to marine organisms and ecosystems
– The biogeochemistry of naturally occurring and anthropogenic substances
– Models that describe and predict the above processes
– Monitoring studies, to the extent that their results provide new information on functional processes
– Methodological papers describing improved quantitative techniques for the marine sciences.