J. Antonio Guzmán Q., Maria H. Park, Laura J. Williams, Jeannine Cavender-Bares
{"title":"森林多样性和组成所促进的季节性结构稳定性解释了高产的原因","authors":"J. Antonio Guzmán Q., Maria H. Park, Laura J. Williams, Jeannine Cavender-Bares","doi":"10.1002/ecy.70055","DOIUrl":null,"url":null,"abstract":"<p>The stability of forest productivity is a widely studied phenomenon often associated with tree species diversity. Yet, drivers of stability in forest structure and its consequences for forest productivity remain poorly understood. Using a large (10 ha) young tree diversity experiment, we evaluated how forest structure and multiple dimensions of diversity and composition are related to remotely sensed structural metrics and their stability through the growing season. We then examined whether structural stability (SS) across the growing season (April–October) could explain overyielding (i.e., the net biodiversity effect, NBE) in annual wood productivity. Using Uncrewed Aerial Vehicle-Light Detecting and Ranging (UAV-LiDAR), we surveyed experimental tree communities eight times at regular intervals from before bud break to after leaf senescence to derive metrics associated with canopy height heterogeneity, fractional plant cover, and forest structural complexity (based on fractal geometry). The inverse coefficients of variation for each of these three metrics through the season were used as measures of SS. These metrics were then coupled with annual tree inventories to evaluate their relationships with the NBE. Our findings indicate that wood volume and, to some extent, multiple dimensions of diversity and composition (i.e., taxonomic, phylogenetic, and functional) explain remotely sensed metrics of forest structure and their SS. Increases in wood volume as well as functional and phylogenetic diversity and variability (a measure of diversity independent of species richness) were linked to higher SS of forest complexity and canopy height heterogeneity. We further found that higher SS of forest complexity and fractional plant cover were associated with increased overyielding, which was mostly attributable to the complementarity effect. Structural equation models indicate that the stability of structural complexity explains more variation in NBE among plots than dimensions of diversity or variability, highlighting its value as an informative metric that likely integrates multiple drivers associated with overyielding. This study highlights the potential to integrate remote sensing and ecology to disentangle the role of forest SS in shaping ecological processes.</p>","PeriodicalId":11484,"journal":{"name":"Ecology","volume":"106 3","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ecy.70055","citationCount":"0","resultStr":"{\"title\":\"Seasonal structural stability promoted by forest diversity and composition explains overyielding\",\"authors\":\"J. Antonio Guzmán Q., Maria H. Park, Laura J. Williams, Jeannine Cavender-Bares\",\"doi\":\"10.1002/ecy.70055\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The stability of forest productivity is a widely studied phenomenon often associated with tree species diversity. Yet, drivers of stability in forest structure and its consequences for forest productivity remain poorly understood. Using a large (10 ha) young tree diversity experiment, we evaluated how forest structure and multiple dimensions of diversity and composition are related to remotely sensed structural metrics and their stability through the growing season. We then examined whether structural stability (SS) across the growing season (April–October) could explain overyielding (i.e., the net biodiversity effect, NBE) in annual wood productivity. Using Uncrewed Aerial Vehicle-Light Detecting and Ranging (UAV-LiDAR), we surveyed experimental tree communities eight times at regular intervals from before bud break to after leaf senescence to derive metrics associated with canopy height heterogeneity, fractional plant cover, and forest structural complexity (based on fractal geometry). The inverse coefficients of variation for each of these three metrics through the season were used as measures of SS. These metrics were then coupled with annual tree inventories to evaluate their relationships with the NBE. Our findings indicate that wood volume and, to some extent, multiple dimensions of diversity and composition (i.e., taxonomic, phylogenetic, and functional) explain remotely sensed metrics of forest structure and their SS. Increases in wood volume as well as functional and phylogenetic diversity and variability (a measure of diversity independent of species richness) were linked to higher SS of forest complexity and canopy height heterogeneity. We further found that higher SS of forest complexity and fractional plant cover were associated with increased overyielding, which was mostly attributable to the complementarity effect. Structural equation models indicate that the stability of structural complexity explains more variation in NBE among plots than dimensions of diversity or variability, highlighting its value as an informative metric that likely integrates multiple drivers associated with overyielding. This study highlights the potential to integrate remote sensing and ecology to disentangle the role of forest SS in shaping ecological processes.</p>\",\"PeriodicalId\":11484,\"journal\":{\"name\":\"Ecology\",\"volume\":\"106 3\",\"pages\":\"\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2025-03-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ecy.70055\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ecology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ecy.70055\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecology","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ecy.70055","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
Seasonal structural stability promoted by forest diversity and composition explains overyielding
The stability of forest productivity is a widely studied phenomenon often associated with tree species diversity. Yet, drivers of stability in forest structure and its consequences for forest productivity remain poorly understood. Using a large (10 ha) young tree diversity experiment, we evaluated how forest structure and multiple dimensions of diversity and composition are related to remotely sensed structural metrics and their stability through the growing season. We then examined whether structural stability (SS) across the growing season (April–October) could explain overyielding (i.e., the net biodiversity effect, NBE) in annual wood productivity. Using Uncrewed Aerial Vehicle-Light Detecting and Ranging (UAV-LiDAR), we surveyed experimental tree communities eight times at regular intervals from before bud break to after leaf senescence to derive metrics associated with canopy height heterogeneity, fractional plant cover, and forest structural complexity (based on fractal geometry). The inverse coefficients of variation for each of these three metrics through the season were used as measures of SS. These metrics were then coupled with annual tree inventories to evaluate their relationships with the NBE. Our findings indicate that wood volume and, to some extent, multiple dimensions of diversity and composition (i.e., taxonomic, phylogenetic, and functional) explain remotely sensed metrics of forest structure and their SS. Increases in wood volume as well as functional and phylogenetic diversity and variability (a measure of diversity independent of species richness) were linked to higher SS of forest complexity and canopy height heterogeneity. We further found that higher SS of forest complexity and fractional plant cover were associated with increased overyielding, which was mostly attributable to the complementarity effect. Structural equation models indicate that the stability of structural complexity explains more variation in NBE among plots than dimensions of diversity or variability, highlighting its value as an informative metric that likely integrates multiple drivers associated with overyielding. This study highlights the potential to integrate remote sensing and ecology to disentangle the role of forest SS in shaping ecological processes.
期刊介绍:
Ecology publishes articles that report on the basic elements of ecological research. Emphasis is placed on concise, clear articles documenting important ecological phenomena. The journal publishes a broad array of research that includes a rapidly expanding envelope of subject matter, techniques, approaches, and concepts: paleoecology through present-day phenomena; evolutionary, population, physiological, community, and ecosystem ecology, as well as biogeochemistry; inclusive of descriptive, comparative, experimental, mathematical, statistical, and interdisciplinary approaches.