基于机器学习和 CFD 的明渠流速场预测模型构建方法

IF 1.8 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Computational Intelligence Pub Date : 2025-03-17 DOI:10.1111/coin.70043
Bo Li, Cheng Jin, Ruixiang Lin, Xinzhi Zhou, Mingjiang Deng
{"title":"基于机器学习和 CFD 的明渠流速场预测模型构建方法","authors":"Bo Li,&nbsp;Cheng Jin,&nbsp;Ruixiang Lin,&nbsp;Xinzhi Zhou,&nbsp;Mingjiang Deng","doi":"10.1111/coin.70043","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Rapid and accurate prediction of the sectional velocity field of the channel is of great significance to the design and maintenance of open channels and the improvement of irrigation efficiency. During the water delivery process of Renmin Canal of Dujiangyan irrigation system, the water level of the main canal changes rapidly and in a large range, which is the biggest difficulty in real-time prediction of its velocity field. Therefore, based on machine learning, this paper proposes a new method to construct a real-time velocity field prediction model, which can directly predict the velocity field of the channel according to the water level. According to this method, the computational fluid dynamics (CFD) technology is used to simulate the target open channel, and a machine learning model that can adaptively optimize the characteristics of the velocity field data is designed as the velocity field prediction model, which is experimented in the main canal of Renmin Canal of Dujiangyan irrigation system. The results suggest that the predictions are in line with the general features of flow velocity distribution in open channels and have high precision. Therefore, this method is of high value for engineering application and theoretical research.</p>\n </div>","PeriodicalId":55228,"journal":{"name":"Computational Intelligence","volume":"41 2","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Method for Constructing Open-Channel Velocity Field Prediction Model Based on Machine Learning and CFD\",\"authors\":\"Bo Li,&nbsp;Cheng Jin,&nbsp;Ruixiang Lin,&nbsp;Xinzhi Zhou,&nbsp;Mingjiang Deng\",\"doi\":\"10.1111/coin.70043\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Rapid and accurate prediction of the sectional velocity field of the channel is of great significance to the design and maintenance of open channels and the improvement of irrigation efficiency. During the water delivery process of Renmin Canal of Dujiangyan irrigation system, the water level of the main canal changes rapidly and in a large range, which is the biggest difficulty in real-time prediction of its velocity field. Therefore, based on machine learning, this paper proposes a new method to construct a real-time velocity field prediction model, which can directly predict the velocity field of the channel according to the water level. According to this method, the computational fluid dynamics (CFD) technology is used to simulate the target open channel, and a machine learning model that can adaptively optimize the characteristics of the velocity field data is designed as the velocity field prediction model, which is experimented in the main canal of Renmin Canal of Dujiangyan irrigation system. The results suggest that the predictions are in line with the general features of flow velocity distribution in open channels and have high precision. Therefore, this method is of high value for engineering application and theoretical research.</p>\\n </div>\",\"PeriodicalId\":55228,\"journal\":{\"name\":\"Computational Intelligence\",\"volume\":\"41 2\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2025-03-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Intelligence\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/coin.70043\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Intelligence","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/coin.70043","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Method for Constructing Open-Channel Velocity Field Prediction Model Based on Machine Learning and CFD

Rapid and accurate prediction of the sectional velocity field of the channel is of great significance to the design and maintenance of open channels and the improvement of irrigation efficiency. During the water delivery process of Renmin Canal of Dujiangyan irrigation system, the water level of the main canal changes rapidly and in a large range, which is the biggest difficulty in real-time prediction of its velocity field. Therefore, based on machine learning, this paper proposes a new method to construct a real-time velocity field prediction model, which can directly predict the velocity field of the channel according to the water level. According to this method, the computational fluid dynamics (CFD) technology is used to simulate the target open channel, and a machine learning model that can adaptively optimize the characteristics of the velocity field data is designed as the velocity field prediction model, which is experimented in the main canal of Renmin Canal of Dujiangyan irrigation system. The results suggest that the predictions are in line with the general features of flow velocity distribution in open channels and have high precision. Therefore, this method is of high value for engineering application and theoretical research.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computational Intelligence
Computational Intelligence 工程技术-计算机:人工智能
CiteScore
6.90
自引率
3.60%
发文量
65
审稿时长
>12 weeks
期刊介绍: This leading international journal promotes and stimulates research in the field of artificial intelligence (AI). Covering a wide range of issues - from the tools and languages of AI to its philosophical implications - Computational Intelligence provides a vigorous forum for the publication of both experimental and theoretical research, as well as surveys and impact studies. The journal is designed to meet the needs of a wide range of AI workers in academic and industrial research.
期刊最新文献
Reb-DINO: A Lightweight Pedestrian Detection Model With Structural Re-Parameterization in Apple Orchard RETRACTION A Method for Constructing Open-Channel Velocity Field Prediction Model Based on Machine Learning and CFD Violence Detection in Video Using Statistical Features of the Optical Flow and 2D Convolutional Neural Network Real-Time Solutions for Dynamic Complex Matrix Inversion and Chaotic Control Using ODE-Based Neural Computing Methods
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1