{"title":"水生植物时序分数模型的稳定性和分岔分析:植被模式形成的影响","authors":"Shanwei Li, Yimamu Maimaiti","doi":"10.1016/j.matcom.2025.03.007","DOIUrl":null,"url":null,"abstract":"<div><div>The water-plant model is a significant tool for studying vegetation patterns. It helps researchers understand the interactions between water availability and plant growth, which are crucial for analyzing ecological dynamics and predicting changes in vegetation due to environmental factors. However, there has been limited research on the memory effect associated with the water-plant model. This paper investigates a fractional-order water-plant model with cross-diffusion, in which the fractional order signifies the memory effect. First, we examine the conditions for the equilibrium point in a spatially homogeneous model, followed by an analysis of the model’s linear stability and the existence of Hopf bifurcation. Subsequently, we analyze the stability of spatiotemporal models incorporating cross-diffusion, along with the presence of Turing bifurcation, Hopf bifurcation, and Turing–Hopf bifurcation. Finally, we present several numerical simulations to validate the theoretical results. The results indicate that the Hopf bifurcation parameters increase with the fractional order <span><math><mi>τ</mi></math></span>, leading to a larger parameter space for Hopf instability. As the fractional order <span><math><mi>τ</mi></math></span> increases, it results in a smaller parameter space for Turing instability and a reduced parameter space for stability. This indicates that an increase in the fractional order <span><math><mi>τ</mi></math></span> accelerates the transition of vegetation patterns, thereby affecting the stability of the system.</div></div>","PeriodicalId":49856,"journal":{"name":"Mathematics and Computers in Simulation","volume":"234 ","pages":"Pages 342-358"},"PeriodicalIF":4.4000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stability and bifurcation analysis of a time-order fractional model for water-plants: Implications for vegetation pattern formation\",\"authors\":\"Shanwei Li, Yimamu Maimaiti\",\"doi\":\"10.1016/j.matcom.2025.03.007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The water-plant model is a significant tool for studying vegetation patterns. It helps researchers understand the interactions between water availability and plant growth, which are crucial for analyzing ecological dynamics and predicting changes in vegetation due to environmental factors. However, there has been limited research on the memory effect associated with the water-plant model. This paper investigates a fractional-order water-plant model with cross-diffusion, in which the fractional order signifies the memory effect. First, we examine the conditions for the equilibrium point in a spatially homogeneous model, followed by an analysis of the model’s linear stability and the existence of Hopf bifurcation. Subsequently, we analyze the stability of spatiotemporal models incorporating cross-diffusion, along with the presence of Turing bifurcation, Hopf bifurcation, and Turing–Hopf bifurcation. Finally, we present several numerical simulations to validate the theoretical results. The results indicate that the Hopf bifurcation parameters increase with the fractional order <span><math><mi>τ</mi></math></span>, leading to a larger parameter space for Hopf instability. As the fractional order <span><math><mi>τ</mi></math></span> increases, it results in a smaller parameter space for Turing instability and a reduced parameter space for stability. This indicates that an increase in the fractional order <span><math><mi>τ</mi></math></span> accelerates the transition of vegetation patterns, thereby affecting the stability of the system.</div></div>\",\"PeriodicalId\":49856,\"journal\":{\"name\":\"Mathematics and Computers in Simulation\",\"volume\":\"234 \",\"pages\":\"Pages 342-358\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2025-03-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematics and Computers in Simulation\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378475425000825\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics and Computers in Simulation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378475425000825","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Stability and bifurcation analysis of a time-order fractional model for water-plants: Implications for vegetation pattern formation
The water-plant model is a significant tool for studying vegetation patterns. It helps researchers understand the interactions between water availability and plant growth, which are crucial for analyzing ecological dynamics and predicting changes in vegetation due to environmental factors. However, there has been limited research on the memory effect associated with the water-plant model. This paper investigates a fractional-order water-plant model with cross-diffusion, in which the fractional order signifies the memory effect. First, we examine the conditions for the equilibrium point in a spatially homogeneous model, followed by an analysis of the model’s linear stability and the existence of Hopf bifurcation. Subsequently, we analyze the stability of spatiotemporal models incorporating cross-diffusion, along with the presence of Turing bifurcation, Hopf bifurcation, and Turing–Hopf bifurcation. Finally, we present several numerical simulations to validate the theoretical results. The results indicate that the Hopf bifurcation parameters increase with the fractional order , leading to a larger parameter space for Hopf instability. As the fractional order increases, it results in a smaller parameter space for Turing instability and a reduced parameter space for stability. This indicates that an increase in the fractional order accelerates the transition of vegetation patterns, thereby affecting the stability of the system.
期刊介绍:
The aim of the journal is to provide an international forum for the dissemination of up-to-date information in the fields of the mathematics and computers, in particular (but not exclusively) as they apply to the dynamics of systems, their simulation and scientific computation in general. Published material ranges from short, concise research papers to more general tutorial articles.
Mathematics and Computers in Simulation, published monthly, is the official organ of IMACS, the International Association for Mathematics and Computers in Simulation (Formerly AICA). This Association, founded in 1955 and legally incorporated in 1956 is a member of FIACC (the Five International Associations Coordinating Committee), together with IFIP, IFAV, IFORS and IMEKO.
Topics covered by the journal include mathematical tools in:
•The foundations of systems modelling
•Numerical analysis and the development of algorithms for simulation
They also include considerations about computer hardware for simulation and about special software and compilers.
The journal also publishes articles concerned with specific applications of modelling and simulation in science and engineering, with relevant applied mathematics, the general philosophy of systems simulation, and their impact on disciplinary and interdisciplinary research.
The journal includes a Book Review section -- and a "News on IMACS" section that contains a Calendar of future Conferences/Events and other information about the Association.