水生植物时序分数模型的稳定性和分岔分析:植被模式形成的影响

IF 4.4 2区 数学 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Mathematics and Computers in Simulation Pub Date : 2025-03-17 DOI:10.1016/j.matcom.2025.03.007
Shanwei Li, Yimamu Maimaiti
{"title":"水生植物时序分数模型的稳定性和分岔分析:植被模式形成的影响","authors":"Shanwei Li,&nbsp;Yimamu Maimaiti","doi":"10.1016/j.matcom.2025.03.007","DOIUrl":null,"url":null,"abstract":"<div><div>The water-plant model is a significant tool for studying vegetation patterns. It helps researchers understand the interactions between water availability and plant growth, which are crucial for analyzing ecological dynamics and predicting changes in vegetation due to environmental factors. However, there has been limited research on the memory effect associated with the water-plant model. This paper investigates a fractional-order water-plant model with cross-diffusion, in which the fractional order signifies the memory effect. First, we examine the conditions for the equilibrium point in a spatially homogeneous model, followed by an analysis of the model’s linear stability and the existence of Hopf bifurcation. Subsequently, we analyze the stability of spatiotemporal models incorporating cross-diffusion, along with the presence of Turing bifurcation, Hopf bifurcation, and Turing–Hopf bifurcation. Finally, we present several numerical simulations to validate the theoretical results. The results indicate that the Hopf bifurcation parameters increase with the fractional order <span><math><mi>τ</mi></math></span>, leading to a larger parameter space for Hopf instability. As the fractional order <span><math><mi>τ</mi></math></span> increases, it results in a smaller parameter space for Turing instability and a reduced parameter space for stability. This indicates that an increase in the fractional order <span><math><mi>τ</mi></math></span> accelerates the transition of vegetation patterns, thereby affecting the stability of the system.</div></div>","PeriodicalId":49856,"journal":{"name":"Mathematics and Computers in Simulation","volume":"234 ","pages":"Pages 342-358"},"PeriodicalIF":4.4000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stability and bifurcation analysis of a time-order fractional model for water-plants: Implications for vegetation pattern formation\",\"authors\":\"Shanwei Li,&nbsp;Yimamu Maimaiti\",\"doi\":\"10.1016/j.matcom.2025.03.007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The water-plant model is a significant tool for studying vegetation patterns. It helps researchers understand the interactions between water availability and plant growth, which are crucial for analyzing ecological dynamics and predicting changes in vegetation due to environmental factors. However, there has been limited research on the memory effect associated with the water-plant model. This paper investigates a fractional-order water-plant model with cross-diffusion, in which the fractional order signifies the memory effect. First, we examine the conditions for the equilibrium point in a spatially homogeneous model, followed by an analysis of the model’s linear stability and the existence of Hopf bifurcation. Subsequently, we analyze the stability of spatiotemporal models incorporating cross-diffusion, along with the presence of Turing bifurcation, Hopf bifurcation, and Turing–Hopf bifurcation. Finally, we present several numerical simulations to validate the theoretical results. The results indicate that the Hopf bifurcation parameters increase with the fractional order <span><math><mi>τ</mi></math></span>, leading to a larger parameter space for Hopf instability. As the fractional order <span><math><mi>τ</mi></math></span> increases, it results in a smaller parameter space for Turing instability and a reduced parameter space for stability. This indicates that an increase in the fractional order <span><math><mi>τ</mi></math></span> accelerates the transition of vegetation patterns, thereby affecting the stability of the system.</div></div>\",\"PeriodicalId\":49856,\"journal\":{\"name\":\"Mathematics and Computers in Simulation\",\"volume\":\"234 \",\"pages\":\"Pages 342-358\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2025-03-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematics and Computers in Simulation\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378475425000825\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics and Computers in Simulation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378475425000825","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Stability and bifurcation analysis of a time-order fractional model for water-plants: Implications for vegetation pattern formation
The water-plant model is a significant tool for studying vegetation patterns. It helps researchers understand the interactions between water availability and plant growth, which are crucial for analyzing ecological dynamics and predicting changes in vegetation due to environmental factors. However, there has been limited research on the memory effect associated with the water-plant model. This paper investigates a fractional-order water-plant model with cross-diffusion, in which the fractional order signifies the memory effect. First, we examine the conditions for the equilibrium point in a spatially homogeneous model, followed by an analysis of the model’s linear stability and the existence of Hopf bifurcation. Subsequently, we analyze the stability of spatiotemporal models incorporating cross-diffusion, along with the presence of Turing bifurcation, Hopf bifurcation, and Turing–Hopf bifurcation. Finally, we present several numerical simulations to validate the theoretical results. The results indicate that the Hopf bifurcation parameters increase with the fractional order τ, leading to a larger parameter space for Hopf instability. As the fractional order τ increases, it results in a smaller parameter space for Turing instability and a reduced parameter space for stability. This indicates that an increase in the fractional order τ accelerates the transition of vegetation patterns, thereby affecting the stability of the system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mathematics and Computers in Simulation
Mathematics and Computers in Simulation 数学-计算机:跨学科应用
CiteScore
8.90
自引率
4.30%
发文量
335
审稿时长
54 days
期刊介绍: The aim of the journal is to provide an international forum for the dissemination of up-to-date information in the fields of the mathematics and computers, in particular (but not exclusively) as they apply to the dynamics of systems, their simulation and scientific computation in general. Published material ranges from short, concise research papers to more general tutorial articles. Mathematics and Computers in Simulation, published monthly, is the official organ of IMACS, the International Association for Mathematics and Computers in Simulation (Formerly AICA). This Association, founded in 1955 and legally incorporated in 1956 is a member of FIACC (the Five International Associations Coordinating Committee), together with IFIP, IFAV, IFORS and IMEKO. Topics covered by the journal include mathematical tools in: •The foundations of systems modelling •Numerical analysis and the development of algorithms for simulation They also include considerations about computer hardware for simulation and about special software and compilers. The journal also publishes articles concerned with specific applications of modelling and simulation in science and engineering, with relevant applied mathematics, the general philosophy of systems simulation, and their impact on disciplinary and interdisciplinary research. The journal includes a Book Review section -- and a "News on IMACS" section that contains a Calendar of future Conferences/Events and other information about the Association.
期刊最新文献
Stability and bifurcation analysis of a time-order fractional model for water-plants: Implications for vegetation pattern formation Dynamical analysis and optimal control strategy of seasonal brucellosis Motion interpolation with Euler–Rodrigues frames on extremal Pythagorean-hodograph curves Well-posedness and decay of the energy of the viscoelastic porous elastic system with dual phase-lag model High order difference method for fractional convection equation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1