{"title":"Antibacterial Properties of Carbon Fiber/Polyether Ether Ketone Artificial Bone Composites Modified by Black Phosphorus Coating Assisted by Wet Chemical Nitration Surface Treatment","authors":"Luxiao Sang, Hao Li, Runze Shi, Wen Qin, Tong Xing, Shengnan Qin, Aoqun Jian","doi":"10.1007/s42235-025-00662-3","DOIUrl":null,"url":null,"abstract":"<div><p>The poor surface antibacterial properties are one of the important factors limiting the application of Carbon Fibers Reinforced Polyetheretherketone (CFR-P) composites as artificial bone replace materials. Some of the Two-Dimensional (2D) nanomaterials with unique lamellar structures and biological properties have been demonstrated to have excellent antibacterial properties. Antibacterial properties can be improved by feasible chemical strategies for preparing 2D nanomaterials coating on the surface of CFR-P. In this work, Black Phosphorus (BP) coating was prepared on the originally chemically inert CFR-P surface based on wet chemical pretreatment. The physical and chemical properties, including surface microstructure, chemical composition and state, roughness and hydrophilicity were characterized. The antibacterial ratios against <i>Staphylococcus aureus</i> (<i>S. aureus</i>), <i>Escherichia coli</i> (<i>E. coli</i>), and <i>Streptococcus mutans</i> (<i>S. mutans</i>) were evaluated. The results indicated that hydrophilicity of BP coating on CFR-P was significantly higher compared to that of the pure CFR-P. Wet chemical pretreatment using mixed acid reagents (concentrated sulfuric acid and concentrated nitric acid) introduced hydroxyl, carboxyl and nitro groups on CFR-P. The BP coating exhibited the antibacterial rate of over 98% against both <i>S. aureus</i> and <i>E. coli</i>. In addition, the antibacterial rate of BP coating against the main pathogenic bacteria of dental caries, <i>Streptococcus mutans</i>, reached 45%.</p></div>","PeriodicalId":614,"journal":{"name":"Journal of Bionic Engineering","volume":"22 2","pages":"838 - 850"},"PeriodicalIF":4.9000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Bionic Engineering","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s42235-025-00662-3","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
Antibacterial Properties of Carbon Fiber/Polyether Ether Ketone Artificial Bone Composites Modified by Black Phosphorus Coating Assisted by Wet Chemical Nitration Surface Treatment
The poor surface antibacterial properties are one of the important factors limiting the application of Carbon Fibers Reinforced Polyetheretherketone (CFR-P) composites as artificial bone replace materials. Some of the Two-Dimensional (2D) nanomaterials with unique lamellar structures and biological properties have been demonstrated to have excellent antibacterial properties. Antibacterial properties can be improved by feasible chemical strategies for preparing 2D nanomaterials coating on the surface of CFR-P. In this work, Black Phosphorus (BP) coating was prepared on the originally chemically inert CFR-P surface based on wet chemical pretreatment. The physical and chemical properties, including surface microstructure, chemical composition and state, roughness and hydrophilicity were characterized. The antibacterial ratios against Staphylococcus aureus (S. aureus), Escherichia coli (E. coli), and Streptococcus mutans (S. mutans) were evaluated. The results indicated that hydrophilicity of BP coating on CFR-P was significantly higher compared to that of the pure CFR-P. Wet chemical pretreatment using mixed acid reagents (concentrated sulfuric acid and concentrated nitric acid) introduced hydroxyl, carboxyl and nitro groups on CFR-P. The BP coating exhibited the antibacterial rate of over 98% against both S. aureus and E. coli. In addition, the antibacterial rate of BP coating against the main pathogenic bacteria of dental caries, Streptococcus mutans, reached 45%.
期刊介绍:
The Journal of Bionic Engineering (JBE) is a peer-reviewed journal that publishes original research papers and reviews that apply the knowledge learned from nature and biological systems to solve concrete engineering problems. The topics that JBE covers include but are not limited to:
Mechanisms, kinematical mechanics and control of animal locomotion, development of mobile robots with walking (running and crawling), swimming or flying abilities inspired by animal locomotion.
Structures, morphologies, composition and physical properties of natural and biomaterials; fabrication of new materials mimicking the properties and functions of natural and biomaterials.
Biomedical materials, artificial organs and tissue engineering for medical applications; rehabilitation equipment and devices.
Development of bioinspired computation methods and artificial intelligence for engineering applications.