I. I. Preobrazhenskiy, E. S. Klimashina, Ya. Yu. Filippov, P. V. Evdokimov, V. I. Putlyaev
{"title":"使用基于磷酸镁的生物材料修复骨组织的前景","authors":"I. I. Preobrazhenskiy, E. S. Klimashina, Ya. Yu. Filippov, P. V. Evdokimov, V. I. Putlyaev","doi":"10.1134/S0020168524701620","DOIUrl":null,"url":null,"abstract":"<p>Regenerative medicine approaches require the creation of new types of resorbable inorganic materials for use in bone tissue engineering. This review considers magnesium-based materials, including magnesium phosphates, which are characterized by a high dissolution degree in the body environment, and their prospects for creating implants for the treatment of bone tissue defects, including cements, ceramics, and composite scaffolds.</p>","PeriodicalId":585,"journal":{"name":"Inorganic Materials","volume":"60 12","pages":"1391 - 1404"},"PeriodicalIF":0.9000,"publicationDate":"2025-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prospects for Using Biomaterials Based on Magnesium Phosphates for Bone Tissue Repair\",\"authors\":\"I. I. Preobrazhenskiy, E. S. Klimashina, Ya. Yu. Filippov, P. V. Evdokimov, V. I. Putlyaev\",\"doi\":\"10.1134/S0020168524701620\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Regenerative medicine approaches require the creation of new types of resorbable inorganic materials for use in bone tissue engineering. This review considers magnesium-based materials, including magnesium phosphates, which are characterized by a high dissolution degree in the body environment, and their prospects for creating implants for the treatment of bone tissue defects, including cements, ceramics, and composite scaffolds.</p>\",\"PeriodicalId\":585,\"journal\":{\"name\":\"Inorganic Materials\",\"volume\":\"60 12\",\"pages\":\"1391 - 1404\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2025-03-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Inorganic Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S0020168524701620\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inorganic Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1134/S0020168524701620","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Prospects for Using Biomaterials Based on Magnesium Phosphates for Bone Tissue Repair
Regenerative medicine approaches require the creation of new types of resorbable inorganic materials for use in bone tissue engineering. This review considers magnesium-based materials, including magnesium phosphates, which are characterized by a high dissolution degree in the body environment, and their prospects for creating implants for the treatment of bone tissue defects, including cements, ceramics, and composite scaffolds.
期刊介绍:
Inorganic Materials is a journal that publishes reviews and original articles devoted to chemistry, physics, and applications of various inorganic materials including high-purity substances and materials. The journal discusses phase equilibria, including P–T–X diagrams, and the fundamentals of inorganic materials science, which determines preparatory conditions for compounds of various compositions with specified deviations from stoichiometry. Inorganic Materials is a multidisciplinary journal covering all classes of inorganic materials. The journal welcomes manuscripts from all countries in the English or Russian language.