IF 9.6 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Rare Metals Pub Date : 2024-12-03 DOI:10.1007/s12598-024-03064-2
Hui-Long Ning, Chao-Ping Liang, Shan-Shan Qiang, Jie-Xiang Li, Sheng Tang, Ye-Tao Li, Wei Sun, Yue Yang
{"title":"Gold-doped iron disulfide as cathode materials for enhanced electrochemical performance in thermal batteries","authors":"Hui-Long Ning,&nbsp;Chao-Ping Liang,&nbsp;Shan-Shan Qiang,&nbsp;Jie-Xiang Li,&nbsp;Sheng Tang,&nbsp;Ye-Tao Li,&nbsp;Wei Sun,&nbsp;Yue Yang","doi":"10.1007/s12598-024-03064-2","DOIUrl":null,"url":null,"abstract":"<div><p>Iron disulfide (FeS<sub>2</sub>) has been widely used in thermal batteries because of its high theoretical specific capacity and voltage plateau. However, low thermal decomposition temperature, poor conductivity and inferior actual specific capacity limit its wide applications. Herein, we report a gold-doped FeS<sub>2</sub> (FeS<sub>2</sub>-Au), which not only reduces the band gap of the FeS<sub>2</sub> crystals but also enriches the electron transport path of FeS<sub>2</sub> by the formation of Au nanoparticles. First-principles calculation shows that the diffusion energy barrier of lithium-ion is reduced after the Au-doped FeS<sub>2</sub>. In addition, Au increases the electron cloud density around sulfur atoms, which helps to enhance the stability of Fe-S covalent bonds and thus results in better thermal stability of FeS<sub>2</sub>. When the Au content is 130 μg·g<sup>−1</sup> (FeS<sub>2</sub>-Au<sub>4</sub>), the thermal decomposition temperature (TG<sub>5%</sub>) of FeS<sub>2</sub>-Au is 72.2 °C higher than that of pristine FeS<sub>2</sub>. At a discharge temperature of 500 °C, a current density of 200 mA·cm<sup>−2</sup> and a cutoff voltage of 1.4 V, FeS<sub>2</sub>-Au<sub>4</sub> demonstrates superior specific capacity and high specific energy compared to FeS<sub>2</sub>. More precisely, the specific capacity of FeS<sub>2</sub>-Au<sub>4</sub> attains a value of 379 mAh·g<sup>−1</sup>, with a corresponding specific energy of 714 Wh·kg<sup>−1</sup>. In contrast, the discharge specific capacity and specific energy of FeS<sub>2</sub> are lower, amounting to 348 mAh·g<sup>−1</sup> and 656 Wh·kg<sup>−1</sup>, respectively. This study offers a novel approach to enhancing the electrochemical performance of FeS<sub>2</sub> in high-temperature molten salt electrochemical systems (thermal batteries), thereby laying a solid foundation for its potential practical application.</p><h3>Graphic abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":749,"journal":{"name":"Rare Metals","volume":"44 3","pages":"1687 - 1700"},"PeriodicalIF":9.6000,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rare Metals","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12598-024-03064-2","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

二硫化铁(FeS2)具有较高的理论比容量和电压高原,因此在热电池中得到了广泛应用。然而,较低的热分解温度、较差的导电性和较低的实际比容量限制了它的广泛应用。在此,我们报告了一种金掺杂的 FeS2(FeS2-Au),它不仅降低了 FeS2 晶体的带隙,还通过形成金纳米粒子丰富了 FeS2 的电子传输路径。第一性原理计算表明,掺金 FeS2 后,锂离子的扩散能垒降低了。此外,金还增加了硫原子周围的电子云密度,有助于提高 Fe-S 共价键的稳定性,从而使 FeS2 具有更好的热稳定性。当金含量为 130 μg-g-1(FeS2-Au4)时,FeS2-Au 的热分解温度(TG5%)比原始 FeS2 高 72.2 ℃。在放电温度为 500 ℃、电流密度为 200 mA-cm-2、截止电压为 1.4 V 的条件下,FeS2-Au4 与 FeS2 相比具有更高的比容量和比能量。更确切地说,FeS2-Au4 的比容量达到了 379 mAh-g-1,相应的比能量为 714 Wh-kg-1。相比之下,FeS2 的放电比容量和比能量较低,分别为 348 mAh-g-1 和 656 Wh-kg-1。这项研究为提高 FeS2 在高温熔盐电化学系统(热电池)中的电化学性能提供了一种新方法,从而为其潜在的实际应用奠定了坚实的基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Gold-doped iron disulfide as cathode materials for enhanced electrochemical performance in thermal batteries

Iron disulfide (FeS2) has been widely used in thermal batteries because of its high theoretical specific capacity and voltage plateau. However, low thermal decomposition temperature, poor conductivity and inferior actual specific capacity limit its wide applications. Herein, we report a gold-doped FeS2 (FeS2-Au), which not only reduces the band gap of the FeS2 crystals but also enriches the electron transport path of FeS2 by the formation of Au nanoparticles. First-principles calculation shows that the diffusion energy barrier of lithium-ion is reduced after the Au-doped FeS2. In addition, Au increases the electron cloud density around sulfur atoms, which helps to enhance the stability of Fe-S covalent bonds and thus results in better thermal stability of FeS2. When the Au content is 130 μg·g−1 (FeS2-Au4), the thermal decomposition temperature (TG5%) of FeS2-Au is 72.2 °C higher than that of pristine FeS2. At a discharge temperature of 500 °C, a current density of 200 mA·cm−2 and a cutoff voltage of 1.4 V, FeS2-Au4 demonstrates superior specific capacity and high specific energy compared to FeS2. More precisely, the specific capacity of FeS2-Au4 attains a value of 379 mAh·g−1, with a corresponding specific energy of 714 Wh·kg−1. In contrast, the discharge specific capacity and specific energy of FeS2 are lower, amounting to 348 mAh·g−1 and 656 Wh·kg−1, respectively. This study offers a novel approach to enhancing the electrochemical performance of FeS2 in high-temperature molten salt electrochemical systems (thermal batteries), thereby laying a solid foundation for its potential practical application.

Graphic abstract

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Rare Metals
Rare Metals 工程技术-材料科学:综合
CiteScore
12.10
自引率
12.50%
发文量
2919
审稿时长
2.7 months
期刊介绍: Rare Metals is a monthly peer-reviewed journal published by the Nonferrous Metals Society of China. It serves as a platform for engineers and scientists to communicate and disseminate original research articles in the field of rare metals. The journal focuses on a wide range of topics including metallurgy, processing, and determination of rare metals. Additionally, it showcases the application of rare metals in advanced materials such as superconductors, semiconductors, composites, and ceramics.
期刊最新文献
Solvent extraction systems for selective isolation of light rare earth elements with high selectivity for Sm and La Site-controlled doping of Eu3+ in SmCrO3 with modulated magnetic and dielectric properties Advances in modification of metal and noble metal nanomaterials for metal oxide gas sensors: a review Oxygen vacancies in polyimide carbon enable stable zinc-ion storage Tuned bi-anisotropy of Y2Co14B nanocrystalline magnetic alloys toward high-frequency applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1