通过正交光热感应交换控制液晶致动器的变形模式和振幅

IF 16.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Angewandte Chemie International Edition Pub Date : 2025-03-22 DOI:10.1002/anie.202505172
Jian Ding, Tuan Liu, Jinwen Zhang, Yuzhan Li, Xuepei Miao, Caicai Li, Wanqi Chen, Baihang Chen, Xinyi Huang, Liangdong Zhang, Kun Wang, Zhixiang Dong, Bingkun Bao, Linyong Zhu, Qiuning Lin
{"title":"通过正交光热感应交换控制液晶致动器的变形模式和振幅","authors":"Jian Ding, Tuan Liu, Jinwen Zhang, Yuzhan Li, Xuepei Miao, Caicai Li, Wanqi Chen, Baihang Chen, Xinyi Huang, Liangdong Zhang, Kun Wang, Zhixiang Dong, Bingkun Bao, Linyong Zhu, Qiuning Lin","doi":"10.1002/anie.202505172","DOIUrl":null,"url":null,"abstract":"Liquid crystal elastomers (LCEs) are versatile soft actuators known for their flexible texture, low density, and ability to undergo reversible deformations that mimic the behavior of skeletal muscles. These properties make them highly attractive for applications in exoskeletons, soft robotics, and medical devices. However, their functionality is typically limited to simple and discontinuous deformations. This study introduces a novel structural design that enables precise control of both the mode and amplitude of deformation. This design integrates photo‐reactive o‐nitrobenzyl moieties and temperature‐dependent hydrogen bonds into the LCE structure. The o‐nitrobenzyl moieties enable irreversible reconfiguration of the LCE crosslinked network through photoreactions, allowing for easy alignment and reshaping of the material. Meanwhile, the hydrogen bonds act as \"temperature‐dependent locks\", regulating the mobility of polymer chains during thermal deformation. By adjusting the heating temperature, the deformation amplitude can be finely tuned across a wide range (0~103%). The synergy of these two mechanisms—light‐induced irreversible reconfiguration and temperature‐induced reversible H‐bond exchanges—empowers LCEs to achieve customizable and continuous deformations. This represents a significant advancement in bridging the gap between synthetic actuators and biological motion systems.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"183 1","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2025-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Controlled Deformation Mode and Amplitude of Liquid Crystal Actuators through Orthogonal Light and Heat‐Induced Exchanges\",\"authors\":\"Jian Ding, Tuan Liu, Jinwen Zhang, Yuzhan Li, Xuepei Miao, Caicai Li, Wanqi Chen, Baihang Chen, Xinyi Huang, Liangdong Zhang, Kun Wang, Zhixiang Dong, Bingkun Bao, Linyong Zhu, Qiuning Lin\",\"doi\":\"10.1002/anie.202505172\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Liquid crystal elastomers (LCEs) are versatile soft actuators known for their flexible texture, low density, and ability to undergo reversible deformations that mimic the behavior of skeletal muscles. These properties make them highly attractive for applications in exoskeletons, soft robotics, and medical devices. However, their functionality is typically limited to simple and discontinuous deformations. This study introduces a novel structural design that enables precise control of both the mode and amplitude of deformation. This design integrates photo‐reactive o‐nitrobenzyl moieties and temperature‐dependent hydrogen bonds into the LCE structure. The o‐nitrobenzyl moieties enable irreversible reconfiguration of the LCE crosslinked network through photoreactions, allowing for easy alignment and reshaping of the material. Meanwhile, the hydrogen bonds act as \\\"temperature‐dependent locks\\\", regulating the mobility of polymer chains during thermal deformation. By adjusting the heating temperature, the deformation amplitude can be finely tuned across a wide range (0~103%). The synergy of these two mechanisms—light‐induced irreversible reconfiguration and temperature‐induced reversible H‐bond exchanges—empowers LCEs to achieve customizable and continuous deformations. This represents a significant advancement in bridging the gap between synthetic actuators and biological motion systems.\",\"PeriodicalId\":125,\"journal\":{\"name\":\"Angewandte Chemie International Edition\",\"volume\":\"183 1\",\"pages\":\"\"},\"PeriodicalIF\":16.1000,\"publicationDate\":\"2025-03-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Angewandte Chemie International Edition\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/anie.202505172\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202505172","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Controlled Deformation Mode and Amplitude of Liquid Crystal Actuators through Orthogonal Light and Heat‐Induced Exchanges
Liquid crystal elastomers (LCEs) are versatile soft actuators known for their flexible texture, low density, and ability to undergo reversible deformations that mimic the behavior of skeletal muscles. These properties make them highly attractive for applications in exoskeletons, soft robotics, and medical devices. However, their functionality is typically limited to simple and discontinuous deformations. This study introduces a novel structural design that enables precise control of both the mode and amplitude of deformation. This design integrates photo‐reactive o‐nitrobenzyl moieties and temperature‐dependent hydrogen bonds into the LCE structure. The o‐nitrobenzyl moieties enable irreversible reconfiguration of the LCE crosslinked network through photoreactions, allowing for easy alignment and reshaping of the material. Meanwhile, the hydrogen bonds act as "temperature‐dependent locks", regulating the mobility of polymer chains during thermal deformation. By adjusting the heating temperature, the deformation amplitude can be finely tuned across a wide range (0~103%). The synergy of these two mechanisms—light‐induced irreversible reconfiguration and temperature‐induced reversible H‐bond exchanges—empowers LCEs to achieve customizable and continuous deformations. This represents a significant advancement in bridging the gap between synthetic actuators and biological motion systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
期刊最新文献
Inside Back Cover: Reinventing the High‐rate Energy Storage of Hard Carbon: the Order‐degree Governs the Trade‐off of Desolvation–Solid Electrolyte Interphase at Interfaces Inside Back Cover: From Autonomous Chemical Micro‐/Nanomotors to Rationally Engineered Bio‐Interfaces Controlled Deformation Mode and Amplitude of Liquid Crystal Actuators through Orthogonal Light and Heat‐Induced Exchanges In situ light-driven pH modulation for NMR studies Coupling Zn2+ Ferrying Effect with Anion-π Interaction to Mitigate Space Charge Layer Enables Ultra-High Utilization Rate Zn Anode
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1