对传统Klingler-Kochi方法的修正,使循环伏安法能准确评估电化学动力学参数

IF 5.6 3区 材料科学 Q1 ELECTROCHEMISTRY Electrochimica Acta Pub Date : 2025-03-22 DOI:10.1016/j.electacta.2025.146081
Rahul Agarwal
{"title":"对传统Klingler-Kochi方法的修正,使循环伏安法能准确评估电化学动力学参数","authors":"Rahul Agarwal","doi":"10.1016/j.electacta.2025.146081","DOIUrl":null,"url":null,"abstract":"<div><div>The conventional Klingler-Kochi method has been utilized for several decades and has recently gained significant traction in the estimation of electrochemical kinetic parameters. This includes the determination of formal electrode potential (<span><math><msubsup><mi>E</mi><mrow><mi>f</mi></mrow><mn>0</mn></msubsup></math></span>), standard rate constant (<span><math><msup><mrow><mi>k</mi></mrow><mn>0</mn></msup></math></span>) and dimensionless kinetic parameter (ψ) through the technique of cyclic voltammetry. However, the values obtained through this method occasionally exhibit significant discrepancies when compared to those derived from alternative techniques. The validation of the analytically derived Klingler-Kochi equations through alternate theoretical approach namely numerical methods (digital simulations) has revealed inaccuracies, resulting in misleading interpretations of kinetic data. Consequently, the original equations proposed by Klingler-Kochi have been re-derived, resulting in the refinement of the previous equations. This revised approach is referred to as the corrected Klingler-Kochi method, which should be employed for the accurate estimation of <span><math><msubsup><mi>E</mi><mrow><mi>f</mi></mrow><mn>0</mn></msubsup></math></span>, <span><math><msup><mrow><mi>k</mi></mrow><mn>0</mn></msup></math></span> and ψ for redox couples that adhere to the Butler-Volmer kinetic model, particularly those with a peak potential difference greater than 150 mV and a cathodic charge transfer coefficient (<span><math><msub><mi>α</mi><mi>c</mi></msub></math></span>) within the range of 0.3 &lt; <span><math><msub><mi>α</mi><mi>c</mi></msub></math></span> &lt; 0.7. The assertions are additionally substantiated by experimental validation through voltammetric analysis of the redox couples <span><math><mrow><mspace></mspace><msup><mrow><mo>[</mo><mrow><mi>U</mi><msub><mi>O</mi><mn>2</mn></msub><msub><mrow><mo>(</mo><mrow><mi>C</mi><msub><mi>O</mi><mn>3</mn></msub></mrow><mo>)</mo></mrow><mn>3</mn></msub></mrow><mo>]</mo></mrow><mrow><mn>4</mn><mo>−</mo></mrow></msup><mo>/</mo><msup><mrow><mo>[</mo><mrow><mi>U</mi><msub><mi>O</mi><mn>2</mn></msub><msub><mrow><mo>(</mo><mrow><mi>C</mi><msub><mi>O</mi><mn>3</mn></msub></mrow><mo>)</mo></mrow><mn>3</mn></msub></mrow><mo>]</mo></mrow><mrow><mn>5</mn><mo>−</mo></mrow></msup></mrow></math></span>, <span><math><mrow><msup><mrow><mo>[</mo><mrow><mtext>Pu</mtext><msub><mi>O</mi><mn>2</mn></msub><msub><mrow><mo>(</mo><mrow><mi>C</mi><msub><mi>O</mi><mn>3</mn></msub></mrow><mo>)</mo></mrow><mn>3</mn></msub></mrow><mo>]</mo></mrow><mrow><mn>4</mn><mo>−</mo></mrow></msup><mo>/</mo><msup><mrow><mo>[</mo><mrow><mtext>Pu</mtext><msub><mi>O</mi><mn>2</mn></msub><msub><mrow><mo>(</mo><mrow><mi>C</mi><msub><mi>O</mi><mn>3</mn></msub></mrow><mo>)</mo></mrow><mn>3</mn></msub></mrow><mo>]</mo></mrow><mrow><mn>5</mn><mo>−</mo></mrow></msup></mrow></math></span>, <span><math><mrow><mi>F</mi><msup><mrow><mi>e</mi></mrow><mrow><mn>3</mn><mo>+</mo></mrow></msup><mo>/</mo><mi>F</mi><msup><mrow><mi>e</mi></mrow><mrow><mn>2</mn><mo>+</mo></mrow></msup></mrow></math></span> and <span><math><mrow><mi>E</mi><msup><mrow><mi>u</mi></mrow><mrow><mn>3</mn><mo>+</mo></mrow></msup><mo>/</mo><mi>E</mi><msup><mrow><mi>u</mi></mrow><mrow><mn>2</mn><mo>+</mo></mrow></msup></mrow></math></span>. Both the conventional and corrected Klingler-Kochi methods yield comparable kinetic results (<span><math><msubsup><mi>E</mi><mrow><mi>f</mi></mrow><mn>0</mn></msubsup></math></span> and <span><math><mrow><mspace></mspace><msup><mrow><mi>k</mi></mrow><mn>0</mn></msup></mrow></math></span>) for the <span><math><mrow><mspace></mspace><msup><mrow><mo>[</mo><mrow><mi>U</mi><msub><mi>O</mi><mn>2</mn></msub><msub><mrow><mo>(</mo><mrow><mi>C</mi><msub><mi>O</mi><mn>3</mn></msub></mrow><mo>)</mo></mrow><mn>3</mn></msub></mrow><mo>]</mo></mrow><mrow><mn>4</mn><mo>−</mo></mrow></msup><mo>/</mo><msup><mrow><mo>[</mo><mrow><mi>U</mi><msub><mi>O</mi><mn>2</mn></msub><msub><mrow><mo>(</mo><mrow><mi>C</mi><msub><mi>O</mi><mn>3</mn></msub></mrow><mo>)</mo></mrow><mn>3</mn></msub></mrow><mo>]</mo></mrow><mrow><mn>5</mn><mo>−</mo></mrow></msup></mrow></math></span> couple, which exhibits an <span><math><msub><mi>α</mi><mi>c</mi></msub></math></span> value near 0.5. However, the conventional Klingler-Kochi method produces inaccurate results for the <span><math><mrow><mspace></mspace><msup><mrow><mo>[</mo><mrow><mtext>Pu</mtext><msub><mi>O</mi><mn>2</mn></msub><msub><mrow><mo>(</mo><mrow><mi>C</mi><msub><mi>O</mi><mn>3</mn></msub></mrow><mo>)</mo></mrow><mn>3</mn></msub></mrow><mo>]</mo></mrow><mrow><mn>4</mn><mo>−</mo></mrow></msup><mo>/</mo><msup><mrow><mo>[</mo><mrow><mtext>Pu</mtext><msub><mi>O</mi><mn>2</mn></msub><msub><mrow><mo>(</mo><mrow><mi>C</mi><msub><mi>O</mi><mn>3</mn></msub></mrow><mo>)</mo></mrow><mn>3</mn></msub></mrow><mo>]</mo></mrow><mrow><mn>5</mn><mo>−</mo></mrow></msup></mrow></math></span>, <span><math><mrow><mi>F</mi><msup><mrow><mi>e</mi></mrow><mrow><mn>3</mn><mo>+</mo></mrow></msup><mo>/</mo><mi>F</mi><msup><mrow><mi>e</mi></mrow><mrow><mn>2</mn><mo>+</mo></mrow></msup></mrow></math></span> and <span><math><mrow><mi>E</mi><msup><mrow><mi>u</mi></mrow><mrow><mn>3</mn><mo>+</mo></mrow></msup><mo>/</mo><mi>E</mi><msup><mrow><mi>u</mi></mrow><mrow><mn>2</mn><mo>+</mo></mrow></msup></mrow></math></span> redox couples, where the <span><math><msub><mi>α</mi><mi>c</mi></msub></math></span> values significantly diverge from 0.5. In contrast, the corrected Klingler-Kochi method accurately predicts the kinetic parameters for all examined redox couples, further corroborated by digital simulations.</div></div>","PeriodicalId":305,"journal":{"name":"Electrochimica Acta","volume":"525 ","pages":"Article 146081"},"PeriodicalIF":5.6000,"publicationDate":"2025-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Correction to the conventional Klingler-Kochi method for accurate assessment of electrochemical kinetic parameters utilizing cyclic voltammetry\",\"authors\":\"Rahul Agarwal\",\"doi\":\"10.1016/j.electacta.2025.146081\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The conventional Klingler-Kochi method has been utilized for several decades and has recently gained significant traction in the estimation of electrochemical kinetic parameters. This includes the determination of formal electrode potential (<span><math><msubsup><mi>E</mi><mrow><mi>f</mi></mrow><mn>0</mn></msubsup></math></span>), standard rate constant (<span><math><msup><mrow><mi>k</mi></mrow><mn>0</mn></msup></math></span>) and dimensionless kinetic parameter (ψ) through the technique of cyclic voltammetry. However, the values obtained through this method occasionally exhibit significant discrepancies when compared to those derived from alternative techniques. The validation of the analytically derived Klingler-Kochi equations through alternate theoretical approach namely numerical methods (digital simulations) has revealed inaccuracies, resulting in misleading interpretations of kinetic data. Consequently, the original equations proposed by Klingler-Kochi have been re-derived, resulting in the refinement of the previous equations. This revised approach is referred to as the corrected Klingler-Kochi method, which should be employed for the accurate estimation of <span><math><msubsup><mi>E</mi><mrow><mi>f</mi></mrow><mn>0</mn></msubsup></math></span>, <span><math><msup><mrow><mi>k</mi></mrow><mn>0</mn></msup></math></span> and ψ for redox couples that adhere to the Butler-Volmer kinetic model, particularly those with a peak potential difference greater than 150 mV and a cathodic charge transfer coefficient (<span><math><msub><mi>α</mi><mi>c</mi></msub></math></span>) within the range of 0.3 &lt; <span><math><msub><mi>α</mi><mi>c</mi></msub></math></span> &lt; 0.7. The assertions are additionally substantiated by experimental validation through voltammetric analysis of the redox couples <span><math><mrow><mspace></mspace><msup><mrow><mo>[</mo><mrow><mi>U</mi><msub><mi>O</mi><mn>2</mn></msub><msub><mrow><mo>(</mo><mrow><mi>C</mi><msub><mi>O</mi><mn>3</mn></msub></mrow><mo>)</mo></mrow><mn>3</mn></msub></mrow><mo>]</mo></mrow><mrow><mn>4</mn><mo>−</mo></mrow></msup><mo>/</mo><msup><mrow><mo>[</mo><mrow><mi>U</mi><msub><mi>O</mi><mn>2</mn></msub><msub><mrow><mo>(</mo><mrow><mi>C</mi><msub><mi>O</mi><mn>3</mn></msub></mrow><mo>)</mo></mrow><mn>3</mn></msub></mrow><mo>]</mo></mrow><mrow><mn>5</mn><mo>−</mo></mrow></msup></mrow></math></span>, <span><math><mrow><msup><mrow><mo>[</mo><mrow><mtext>Pu</mtext><msub><mi>O</mi><mn>2</mn></msub><msub><mrow><mo>(</mo><mrow><mi>C</mi><msub><mi>O</mi><mn>3</mn></msub></mrow><mo>)</mo></mrow><mn>3</mn></msub></mrow><mo>]</mo></mrow><mrow><mn>4</mn><mo>−</mo></mrow></msup><mo>/</mo><msup><mrow><mo>[</mo><mrow><mtext>Pu</mtext><msub><mi>O</mi><mn>2</mn></msub><msub><mrow><mo>(</mo><mrow><mi>C</mi><msub><mi>O</mi><mn>3</mn></msub></mrow><mo>)</mo></mrow><mn>3</mn></msub></mrow><mo>]</mo></mrow><mrow><mn>5</mn><mo>−</mo></mrow></msup></mrow></math></span>, <span><math><mrow><mi>F</mi><msup><mrow><mi>e</mi></mrow><mrow><mn>3</mn><mo>+</mo></mrow></msup><mo>/</mo><mi>F</mi><msup><mrow><mi>e</mi></mrow><mrow><mn>2</mn><mo>+</mo></mrow></msup></mrow></math></span> and <span><math><mrow><mi>E</mi><msup><mrow><mi>u</mi></mrow><mrow><mn>3</mn><mo>+</mo></mrow></msup><mo>/</mo><mi>E</mi><msup><mrow><mi>u</mi></mrow><mrow><mn>2</mn><mo>+</mo></mrow></msup></mrow></math></span>. Both the conventional and corrected Klingler-Kochi methods yield comparable kinetic results (<span><math><msubsup><mi>E</mi><mrow><mi>f</mi></mrow><mn>0</mn></msubsup></math></span> and <span><math><mrow><mspace></mspace><msup><mrow><mi>k</mi></mrow><mn>0</mn></msup></mrow></math></span>) for the <span><math><mrow><mspace></mspace><msup><mrow><mo>[</mo><mrow><mi>U</mi><msub><mi>O</mi><mn>2</mn></msub><msub><mrow><mo>(</mo><mrow><mi>C</mi><msub><mi>O</mi><mn>3</mn></msub></mrow><mo>)</mo></mrow><mn>3</mn></msub></mrow><mo>]</mo></mrow><mrow><mn>4</mn><mo>−</mo></mrow></msup><mo>/</mo><msup><mrow><mo>[</mo><mrow><mi>U</mi><msub><mi>O</mi><mn>2</mn></msub><msub><mrow><mo>(</mo><mrow><mi>C</mi><msub><mi>O</mi><mn>3</mn></msub></mrow><mo>)</mo></mrow><mn>3</mn></msub></mrow><mo>]</mo></mrow><mrow><mn>5</mn><mo>−</mo></mrow></msup></mrow></math></span> couple, which exhibits an <span><math><msub><mi>α</mi><mi>c</mi></msub></math></span> value near 0.5. However, the conventional Klingler-Kochi method produces inaccurate results for the <span><math><mrow><mspace></mspace><msup><mrow><mo>[</mo><mrow><mtext>Pu</mtext><msub><mi>O</mi><mn>2</mn></msub><msub><mrow><mo>(</mo><mrow><mi>C</mi><msub><mi>O</mi><mn>3</mn></msub></mrow><mo>)</mo></mrow><mn>3</mn></msub></mrow><mo>]</mo></mrow><mrow><mn>4</mn><mo>−</mo></mrow></msup><mo>/</mo><msup><mrow><mo>[</mo><mrow><mtext>Pu</mtext><msub><mi>O</mi><mn>2</mn></msub><msub><mrow><mo>(</mo><mrow><mi>C</mi><msub><mi>O</mi><mn>3</mn></msub></mrow><mo>)</mo></mrow><mn>3</mn></msub></mrow><mo>]</mo></mrow><mrow><mn>5</mn><mo>−</mo></mrow></msup></mrow></math></span>, <span><math><mrow><mi>F</mi><msup><mrow><mi>e</mi></mrow><mrow><mn>3</mn><mo>+</mo></mrow></msup><mo>/</mo><mi>F</mi><msup><mrow><mi>e</mi></mrow><mrow><mn>2</mn><mo>+</mo></mrow></msup></mrow></math></span> and <span><math><mrow><mi>E</mi><msup><mrow><mi>u</mi></mrow><mrow><mn>3</mn><mo>+</mo></mrow></msup><mo>/</mo><mi>E</mi><msup><mrow><mi>u</mi></mrow><mrow><mn>2</mn><mo>+</mo></mrow></msup></mrow></math></span> redox couples, where the <span><math><msub><mi>α</mi><mi>c</mi></msub></math></span> values significantly diverge from 0.5. In contrast, the corrected Klingler-Kochi method accurately predicts the kinetic parameters for all examined redox couples, further corroborated by digital simulations.</div></div>\",\"PeriodicalId\":305,\"journal\":{\"name\":\"Electrochimica Acta\",\"volume\":\"525 \",\"pages\":\"Article 146081\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2025-03-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electrochimica Acta\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0013468625004438\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electrochimica Acta","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0013468625004438","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

摘要

传统的Klingler-Kochi方法已经使用了几十年,最近在电化学动力学参数的估计中获得了显著的关注。这包括通过循环伏安法技术测定形式电极电位(Ef0Ef0)、标准速率常数(k0k0)和无量纲动力学参数(ψ)。然而,通过这种方法获得的值与其他方法获得的值相比,偶尔会出现显著差异。通过替代理论方法即数值方法(数字模拟)验证解析导出的Klingler-Kochi方程已经揭示了不准确性,导致对动力学数据的误导性解释。因此,对Klingler-Kochi提出的原始方程进行了重新推导,从而对先前的方程进行了细化。这种修正的方法被称为修正的Klingler-Kochi方法,适用于符合Butler-Volmer动力学模型的氧化还原对的Ef0Ef0, k0k0和ψ的准确估计,特别是那些峰值电位差大于150 mV和阴极电荷转移系数(αc - αc)在0.3 <范围内的氧化还原对;ααc & lt;0.7. 通过对氧化还原对[UO2(CO3)3]4−/[UO2(CO3)3]5−[UO2(CO3)3]4−/[UO2(CO3)3]5−[PuO2(CO3)3]4−/[PuO2(CO3)3]5−[PuO2(CO3)3]4−/[PuO2(CO3)3]5−,Fe3+/Fe2+Fe3+/Fe2+和Eu3+/Eu2+Eu3+/Eu2+的伏安分析,进一步证实了上述结论。对于[UO2(CO3)3]4−/[UO2(CO3)3]5−[UO2(CO3)3]4−/[UO2(CO3)3]5−偶联,传统的Klingler-Kochi方法和修正后的Klingler-Kochi方法得到了相似的动力学结果(Ef0Ef0和k0k0), αc - αc值接近0.5。然而,传统的Klingler-Kochi方法对[PuO2(CO3)3]4−/[PuO2(CO3)3]5−[PuO2(CO3)3]4−/[PuO2(CO3)3]5−,Fe3+/Fe2+Fe3+/Fe2+和Eu3+/Eu2+Eu3+/Eu2+氧化还原对的αc - αc值明显偏离0.5。相比之下,修正后的Klingler-Kochi方法准确地预测了所有被检测的氧化还原对的动力学参数,并得到了数字模拟的进一步证实。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Correction to the conventional Klingler-Kochi method for accurate assessment of electrochemical kinetic parameters utilizing cyclic voltammetry
The conventional Klingler-Kochi method has been utilized for several decades and has recently gained significant traction in the estimation of electrochemical kinetic parameters. This includes the determination of formal electrode potential (Ef0), standard rate constant (k0) and dimensionless kinetic parameter (ψ) through the technique of cyclic voltammetry. However, the values obtained through this method occasionally exhibit significant discrepancies when compared to those derived from alternative techniques. The validation of the analytically derived Klingler-Kochi equations through alternate theoretical approach namely numerical methods (digital simulations) has revealed inaccuracies, resulting in misleading interpretations of kinetic data. Consequently, the original equations proposed by Klingler-Kochi have been re-derived, resulting in the refinement of the previous equations. This revised approach is referred to as the corrected Klingler-Kochi method, which should be employed for the accurate estimation of Ef0, k0 and ψ for redox couples that adhere to the Butler-Volmer kinetic model, particularly those with a peak potential difference greater than 150 mV and a cathodic charge transfer coefficient (αc) within the range of 0.3 < αc < 0.7. The assertions are additionally substantiated by experimental validation through voltammetric analysis of the redox couples [UO2(CO3)3]4/[UO2(CO3)3]5, [PuO2(CO3)3]4/[PuO2(CO3)3]5, Fe3+/Fe2+ and Eu3+/Eu2+. Both the conventional and corrected Klingler-Kochi methods yield comparable kinetic results (Ef0 and k0) for the [UO2(CO3)3]4/[UO2(CO3)3]5 couple, which exhibits an αc value near 0.5. However, the conventional Klingler-Kochi method produces inaccurate results for the [PuO2(CO3)3]4/[PuO2(CO3)3]5, Fe3+/Fe2+ and Eu3+/Eu2+ redox couples, where the αc values significantly diverge from 0.5. In contrast, the corrected Klingler-Kochi method accurately predicts the kinetic parameters for all examined redox couples, further corroborated by digital simulations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Electrochimica Acta
Electrochimica Acta 工程技术-电化学
CiteScore
11.30
自引率
6.10%
发文量
1634
审稿时长
41 days
期刊介绍: Electrochimica Acta is an international journal. It is intended for the publication of both original work and reviews in the field of electrochemistry. Electrochemistry should be interpreted to mean any of the research fields covered by the Divisions of the International Society of Electrochemistry listed below, as well as emerging scientific domains covered by ISE New Topics Committee.
期刊最新文献
Editorial Board ISE pages Recent SI Future SI Performance Research in Vanadium Redox Flow Battery: Design of Serpentine-Biomimetic Asymmetric Flow Field Configuration
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1