聚乳酸支架上沉积纳米铈的双极高脉冲电泳工艺

IF 6.1 2区 材料科学 Q1 MATERIALS SCIENCE, COATINGS & FILMS Surface & Coatings Technology Pub Date : 2025-03-21 DOI:10.1016/j.surfcoat.2025.132070
Luis Guilherme Silva Rosa , Luis César Fontana , Julio César Sagás , Eduardo Henrique Backes , Lidiane Cristina Costa , Samarah Vargas Harb , Leonardo A. Pinto , Ítalo M. Oliveira , Luiz Antonio Pessan , Daniela Becker
{"title":"聚乳酸支架上沉积纳米铈的双极高脉冲电泳工艺","authors":"Luis Guilherme Silva Rosa ,&nbsp;Luis César Fontana ,&nbsp;Julio César Sagás ,&nbsp;Eduardo Henrique Backes ,&nbsp;Lidiane Cristina Costa ,&nbsp;Samarah Vargas Harb ,&nbsp;Leonardo A. Pinto ,&nbsp;Ítalo M. Oliveira ,&nbsp;Luiz Antonio Pessan ,&nbsp;Daniela Becker","doi":"10.1016/j.surfcoat.2025.132070","DOIUrl":null,"url":null,"abstract":"<div><div>Electrophoretic deposition is a well-known technique for depositing micro and nanoparticles on substrates of different geometries. The deposited coatings have applications in various areas, especially biomedical uses. Nevertheless, few studies focus on electrophoretic deposition on non-conductive substrates such as biopolymer scaffolds. The present paper uses a modified electrophoretic process to investigate the deposition of cerium oxide nanoparticles (CeO-NPs) on a polylactic acid (PLA) biocomposite scaffold substrate. The substrates were arranged in two ways: one with the scaffold samples freely moving in the liquid medium between the electrodes and the other with the scaffolds attached to the biased electrode. This paper's main goal is to use bipolar pulsed high voltages (if compared to traditional values used in electrophoretic deposition) with a time-off between pulses trains to control the power and prevent overheating. SEM and XPS analyses confirmed the nanoparticles' presence both on the surface – with Ce/C ratio up to 7.6 × 10<sup>−2</sup> for the freely moving scaffolds and 2.8 × 10<sup>−2</sup> for those attached to the biased electrode – and inside the scaffold's pores – presenting Ce/C ratio up to 2.2 × 10<sup>−2</sup> on one scaffold immersed in ethanolic medium – but also found agglomerates. Cell viability tests showed that the treated scaffolds enhance cell spreading and can be further studied for biomedical applications. The results also show that the agitation allied with altering voltage pulses may be beneficial for the deposition on the scaffold's surface and interior using water as solvent.</div></div>","PeriodicalId":22009,"journal":{"name":"Surface & Coatings Technology","volume":"504 ","pages":"Article 132070"},"PeriodicalIF":6.1000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bipolar high-impulse electrophoretic process for cerium nanoparticle deposition on polylactic acid scaffolds\",\"authors\":\"Luis Guilherme Silva Rosa ,&nbsp;Luis César Fontana ,&nbsp;Julio César Sagás ,&nbsp;Eduardo Henrique Backes ,&nbsp;Lidiane Cristina Costa ,&nbsp;Samarah Vargas Harb ,&nbsp;Leonardo A. Pinto ,&nbsp;Ítalo M. Oliveira ,&nbsp;Luiz Antonio Pessan ,&nbsp;Daniela Becker\",\"doi\":\"10.1016/j.surfcoat.2025.132070\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Electrophoretic deposition is a well-known technique for depositing micro and nanoparticles on substrates of different geometries. The deposited coatings have applications in various areas, especially biomedical uses. Nevertheless, few studies focus on electrophoretic deposition on non-conductive substrates such as biopolymer scaffolds. The present paper uses a modified electrophoretic process to investigate the deposition of cerium oxide nanoparticles (CeO-NPs) on a polylactic acid (PLA) biocomposite scaffold substrate. The substrates were arranged in two ways: one with the scaffold samples freely moving in the liquid medium between the electrodes and the other with the scaffolds attached to the biased electrode. This paper's main goal is to use bipolar pulsed high voltages (if compared to traditional values used in electrophoretic deposition) with a time-off between pulses trains to control the power and prevent overheating. SEM and XPS analyses confirmed the nanoparticles' presence both on the surface – with Ce/C ratio up to 7.6 × 10<sup>−2</sup> for the freely moving scaffolds and 2.8 × 10<sup>−2</sup> for those attached to the biased electrode – and inside the scaffold's pores – presenting Ce/C ratio up to 2.2 × 10<sup>−2</sup> on one scaffold immersed in ethanolic medium – but also found agglomerates. Cell viability tests showed that the treated scaffolds enhance cell spreading and can be further studied for biomedical applications. The results also show that the agitation allied with altering voltage pulses may be beneficial for the deposition on the scaffold's surface and interior using water as solvent.</div></div>\",\"PeriodicalId\":22009,\"journal\":{\"name\":\"Surface & Coatings Technology\",\"volume\":\"504 \",\"pages\":\"Article 132070\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2025-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Surface & Coatings Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0257897225003445\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, COATINGS & FILMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surface & Coatings Technology","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0257897225003445","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COATINGS & FILMS","Score":null,"Total":0}
引用次数: 0

摘要

电泳沉积是一种众所周知的在不同几何形状的基底上沉积微粒子和纳米粒子的技术。沉积涂层具有广泛的应用领域,尤其是生物医学领域。然而,很少有研究集中在非导电基底(如生物聚合物支架)上的电泳沉积。本文采用改进的电泳工艺研究了氧化铈纳米颗粒(CeO-NPs)在聚乳酸(PLA)生物复合材料支架基质上的沉积。衬底以两种方式排列:一种是支架样品在电极之间的液体介质中自由移动,另一种是支架附着在偏置电极上。本文的主要目标是使用双极脉冲高压(如果与电泳沉积中使用的传统值相比),脉冲序列之间有一个时间间隔,以控制功率并防止过热。SEM和XPS分析证实了纳米颗粒的存在——自由移动的支架的Ce/C比高达7.6 × 10−2,附着在偏置电极上的支架的Ce/C比为2.8 × 10−2——以及支架孔隙内部——浸泡在乙醇介质中的支架的Ce/C比高达2.2 × 10−2——而且还发现了团块。细胞活力测试表明,处理后的支架可促进细胞扩散,并可进一步研究其在生物医学上的应用。结果还表明,以水为溶剂,搅拌与改变电压脉冲可能有利于支架表面和内部的沉积。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Bipolar high-impulse electrophoretic process for cerium nanoparticle deposition on polylactic acid scaffolds
Electrophoretic deposition is a well-known technique for depositing micro and nanoparticles on substrates of different geometries. The deposited coatings have applications in various areas, especially biomedical uses. Nevertheless, few studies focus on electrophoretic deposition on non-conductive substrates such as biopolymer scaffolds. The present paper uses a modified electrophoretic process to investigate the deposition of cerium oxide nanoparticles (CeO-NPs) on a polylactic acid (PLA) biocomposite scaffold substrate. The substrates were arranged in two ways: one with the scaffold samples freely moving in the liquid medium between the electrodes and the other with the scaffolds attached to the biased electrode. This paper's main goal is to use bipolar pulsed high voltages (if compared to traditional values used in electrophoretic deposition) with a time-off between pulses trains to control the power and prevent overheating. SEM and XPS analyses confirmed the nanoparticles' presence both on the surface – with Ce/C ratio up to 7.6 × 10−2 for the freely moving scaffolds and 2.8 × 10−2 for those attached to the biased electrode – and inside the scaffold's pores – presenting Ce/C ratio up to 2.2 × 10−2 on one scaffold immersed in ethanolic medium – but also found agglomerates. Cell viability tests showed that the treated scaffolds enhance cell spreading and can be further studied for biomedical applications. The results also show that the agitation allied with altering voltage pulses may be beneficial for the deposition on the scaffold's surface and interior using water as solvent.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Surface & Coatings Technology
Surface & Coatings Technology 工程技术-材料科学:膜
CiteScore
10.00
自引率
11.10%
发文量
921
审稿时长
19 days
期刊介绍: Surface and Coatings Technology is an international archival journal publishing scientific papers on significant developments in surface and interface engineering to modify and improve the surface properties of materials for protection in demanding contact conditions or aggressive environments, or for enhanced functional performance. Contributions range from original scientific articles concerned with fundamental and applied aspects of research or direct applications of metallic, inorganic, organic and composite coatings, to invited reviews of current technology in specific areas. Papers submitted to this journal are expected to be in line with the following aspects in processes, and properties/performance: A. Processes: Physical and chemical vapour deposition techniques, thermal and plasma spraying, surface modification by directed energy techniques such as ion, electron and laser beams, thermo-chemical treatment, wet chemical and electrochemical processes such as plating, sol-gel coating, anodization, plasma electrolytic oxidation, etc., but excluding painting. B. Properties/performance: friction performance, wear resistance (e.g., abrasion, erosion, fretting, etc), corrosion and oxidation resistance, thermal protection, diffusion resistance, hydrophilicity/hydrophobicity, and properties relevant to smart materials behaviour and enhanced multifunctional performance for environmental, energy and medical applications, but excluding device aspects.
期刊最新文献
Investigation on plasma nitriding and nitrocarburizing of a continuous cooling bainitic steel Ultrasonic-assisted laser cladding of CoCrFeMnNiSi1.6-WC3 composite coatings: Frequency effect Microstructural tailoring of Cr–Mn–Mo nitrides through Si and Y alloying Study on the synergy of nitrogen-containing borate ester organomolybdenum additives combined with ZDDP Study on the formation mechanism and wettability of micro-nano structures fabricated by laser-phosphating hybrid treatment on 316 stainless steel mesh
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1