光驱动Eu2O3/CoNiZn-LDH@g-C3N4三元异质结纳米复合制氢光催化剂

IF 9.1 1区 工程技术 Q1 ENERGY & FUELS Renewable Energy Pub Date : 2025-03-21 DOI:10.1016/j.renene.2025.122917
Madappa C. Maridevaru , Faisal Al Marzouqi , Munnelli Nagaveni , Murikinati Mamatha Kumari , Muthukonda Venkatakrishnan Shankar , Rengaraj Selvaraj
{"title":"光驱动Eu2O3/CoNiZn-LDH@g-C3N4三元异质结纳米复合制氢光催化剂","authors":"Madappa C. Maridevaru ,&nbsp;Faisal Al Marzouqi ,&nbsp;Munnelli Nagaveni ,&nbsp;Murikinati Mamatha Kumari ,&nbsp;Muthukonda Venkatakrishnan Shankar ,&nbsp;Rengaraj Selvaraj","doi":"10.1016/j.renene.2025.122917","DOIUrl":null,"url":null,"abstract":"<div><div>Photocatalytic H<sub>2</sub> generation is a prospective and ecologically suitable way of manufacturing green hydrogen (H<sub>2</sub>). However, finding the best semiconducting substances with considerable performance is not easy. Inspired by this problem, we suggest in this work the use of a simple impregnation method for the customized sunlight-activated configurable broad-band gap semiconductor by coupling graphitic carbon nitride (CN) with Eu<sub>2</sub>O<sub>3</sub>/CoNiZn-LDH (LDH). Herein demonstrated the LDH loading on g-C<sub>3</sub>N<sub>4</sub> surface impacted photocatalytic function by examining the hybrid ternary nanocomposites' microscopic, spectroscopic, and photophysical properties. Under sunlight, 60 wt% of Eu<sub>2</sub>O<sub>3</sub>/CoNiZn-LDH@g-C<sub>3</sub>N<sub>4</sub> (60-LDHCN) nanocomposite exhibited highest rate of H<sub>2</sub> production (168.5 μmol h<sup>−1</sup>g<sup>−1</sup><sub>cat</sub>) explained by both density of catalytic active sites and intimate interface between different components of the catalyst facilitated effective separation/utilization of photogenerated electron-hole pairs. This correspondingly led to a 4.7-fold and 3.2-fold increase in H<sub>2</sub> generating efficiency of compared to CN (36.2 μmol h<sup>−1</sup>g<sup>−1</sup><sub>cat</sub>) and LDH (51.25 μmol h<sup>−1</sup>g<sup>−1</sup><sub>cat</sub>). Evidently, the photocurrent concentration of the 60-LDHCN nanocomposite depicted around 14.3 and 6.1 times better photocurrent than that of CN and LDH, respectively. The essential component of Type-II heterojunctions' immediate interaction between the semiconductors promoted charge separation and enhanced the number of surface-active sites through the absorption of sunlight.</div></div>","PeriodicalId":419,"journal":{"name":"Renewable Energy","volume":"246 ","pages":"Article 122917"},"PeriodicalIF":9.1000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sunlight driven Eu2O3/CoNiZn-LDH@g-C3N4 ternary heterojunction nanocomposite photocatalyst for hydrogen generation\",\"authors\":\"Madappa C. Maridevaru ,&nbsp;Faisal Al Marzouqi ,&nbsp;Munnelli Nagaveni ,&nbsp;Murikinati Mamatha Kumari ,&nbsp;Muthukonda Venkatakrishnan Shankar ,&nbsp;Rengaraj Selvaraj\",\"doi\":\"10.1016/j.renene.2025.122917\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Photocatalytic H<sub>2</sub> generation is a prospective and ecologically suitable way of manufacturing green hydrogen (H<sub>2</sub>). However, finding the best semiconducting substances with considerable performance is not easy. Inspired by this problem, we suggest in this work the use of a simple impregnation method for the customized sunlight-activated configurable broad-band gap semiconductor by coupling graphitic carbon nitride (CN) with Eu<sub>2</sub>O<sub>3</sub>/CoNiZn-LDH (LDH). Herein demonstrated the LDH loading on g-C<sub>3</sub>N<sub>4</sub> surface impacted photocatalytic function by examining the hybrid ternary nanocomposites' microscopic, spectroscopic, and photophysical properties. Under sunlight, 60 wt% of Eu<sub>2</sub>O<sub>3</sub>/CoNiZn-LDH@g-C<sub>3</sub>N<sub>4</sub> (60-LDHCN) nanocomposite exhibited highest rate of H<sub>2</sub> production (168.5 μmol h<sup>−1</sup>g<sup>−1</sup><sub>cat</sub>) explained by both density of catalytic active sites and intimate interface between different components of the catalyst facilitated effective separation/utilization of photogenerated electron-hole pairs. This correspondingly led to a 4.7-fold and 3.2-fold increase in H<sub>2</sub> generating efficiency of compared to CN (36.2 μmol h<sup>−1</sup>g<sup>−1</sup><sub>cat</sub>) and LDH (51.25 μmol h<sup>−1</sup>g<sup>−1</sup><sub>cat</sub>). Evidently, the photocurrent concentration of the 60-LDHCN nanocomposite depicted around 14.3 and 6.1 times better photocurrent than that of CN and LDH, respectively. The essential component of Type-II heterojunctions' immediate interaction between the semiconductors promoted charge separation and enhanced the number of surface-active sites through the absorption of sunlight.</div></div>\",\"PeriodicalId\":419,\"journal\":{\"name\":\"Renewable Energy\",\"volume\":\"246 \",\"pages\":\"Article 122917\"},\"PeriodicalIF\":9.1000,\"publicationDate\":\"2025-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Renewable Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0960148125005798\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Renewable Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960148125005798","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

光催化制氢是一种具有发展前景和生态适应性的绿色氢气生产方法。然而,找到性能优良的半导体物质并不容易。受到这个问题的启发,我们在这项工作中建议使用一种简单的浸渍方法,通过将石墨氮化碳(CN)与Eu2O3/CoNiZn-LDH (LDH)偶联来定制阳光激活的可配置宽带隙半导体。本文通过考察复合纳米材料的微观、光谱和光物理性质,证明了LDH在g-C3N4表面的负载对光催化功能的影响。在阳光下,60 wt%的Eu2O3/CoNiZn-LDH@g-C3N4 (60- ldhcn)纳米复合材料的H2产率最高(168.5 μmol h - 1g - 1cat),这是由于催化活性位点的密度和催化剂不同组分之间的紧密界面促进了光生电子-空穴对的有效分离和利用。与CN (36.2 μmol h−1g−1cat)和LDH (51.25 μmol h−1g−1cat)相比,H2生成效率分别提高了4.7倍和3.2倍。显然,60-LDHCN纳米复合材料的光电流浓度分别比CN和LDH高14.3倍和6.1倍。ii型异质结在半导体之间的直接相互作用促进了电荷分离,并通过吸收阳光增加了表面活性位点的数量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Sunlight driven Eu2O3/CoNiZn-LDH@g-C3N4 ternary heterojunction nanocomposite photocatalyst for hydrogen generation
Photocatalytic H2 generation is a prospective and ecologically suitable way of manufacturing green hydrogen (H2). However, finding the best semiconducting substances with considerable performance is not easy. Inspired by this problem, we suggest in this work the use of a simple impregnation method for the customized sunlight-activated configurable broad-band gap semiconductor by coupling graphitic carbon nitride (CN) with Eu2O3/CoNiZn-LDH (LDH). Herein demonstrated the LDH loading on g-C3N4 surface impacted photocatalytic function by examining the hybrid ternary nanocomposites' microscopic, spectroscopic, and photophysical properties. Under sunlight, 60 wt% of Eu2O3/CoNiZn-LDH@g-C3N4 (60-LDHCN) nanocomposite exhibited highest rate of H2 production (168.5 μmol h−1g−1cat) explained by both density of catalytic active sites and intimate interface between different components of the catalyst facilitated effective separation/utilization of photogenerated electron-hole pairs. This correspondingly led to a 4.7-fold and 3.2-fold increase in H2 generating efficiency of compared to CN (36.2 μmol h−1g−1cat) and LDH (51.25 μmol h−1g−1cat). Evidently, the photocurrent concentration of the 60-LDHCN nanocomposite depicted around 14.3 and 6.1 times better photocurrent than that of CN and LDH, respectively. The essential component of Type-II heterojunctions' immediate interaction between the semiconductors promoted charge separation and enhanced the number of surface-active sites through the absorption of sunlight.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Renewable Energy
Renewable Energy 工程技术-能源与燃料
CiteScore
18.40
自引率
9.20%
发文量
1955
审稿时长
6.6 months
期刊介绍: Renewable Energy journal is dedicated to advancing knowledge and disseminating insights on various topics and technologies within renewable energy systems and components. Our mission is to support researchers, engineers, economists, manufacturers, NGOs, associations, and societies in staying updated on new developments in their respective fields and applying alternative energy solutions to current practices. As an international, multidisciplinary journal in renewable energy engineering and research, we strive to be a premier peer-reviewed platform and a trusted source of original research and reviews in the field of renewable energy. Join us in our endeavor to drive innovation and progress in sustainable energy solutions.
期刊最新文献
Enhancing melting-solidification performance of latent heat thermal energy storage units with twisted fins High-efficiency hybrid MPPT technique with integrated partial shading detection for photovoltaic systems under varying shading conditions Fast annual energy estimation for solar tower power systems based on heliostat grouping and solar position sampling Investigation on co-pyrolysis polygeneration of municipal solid waste and heavy bio-oil of pine wood based on response surface methodology Performance and exergy analysis of a NaBH4/Al coupled hydrolysis hydrogen production solid oxide fuel cell hybrid turbofan system with integrated water circulation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1