地面/浮式光伏系统中单/双面组件的热模型综述

IF 16.3 1区 工程技术 Q1 ENERGY & FUELS Renewable and Sustainable Energy Reviews Pub Date : 2025-03-28 DOI:10.1016/j.rser.2025.115627
Amr Osama , Giuseppe Marco Tina , Antonio Gagliano
{"title":"地面/浮式光伏系统中单/双面组件的热模型综述","authors":"Amr Osama ,&nbsp;Giuseppe Marco Tina ,&nbsp;Antonio Gagliano","doi":"10.1016/j.rser.2025.115627","DOIUrl":null,"url":null,"abstract":"<div><div>Since the world's policy tends to rely on solar energy to meet energy needs, photovoltaics are considered a crucial asset that requires continuous monitoring. Several installation solutions, including different PV technologies, created challenges in providing a reliable evaluation to depend on. Thermal modeling is essential to predict the cell temperature that is utilized in anticipating the system's electrical performance, as in most commercial software. Hence, this work provides an overview of the most used thermal models for installation solutions (free-standing, roof-mounted, floating, etc.) utilizing both mono and bifacial module technology. The provided analysis is focused on evaluating the different responses of the thermal models that can be used for the same configuration and technology. A sensitive comparative analysis of the various thermal models is provided to assess their response to the climatic parameters as an input to the thermal model. The analysis revealed that for monofacial thermal models, Ross models underestimate the cell temperature at any radiation intensity, while the Faiman model using PVsyst coefficients generates the highest overestimated cell temperature among the examined models. It can be seen that the effect of wind speed reduces for a velocity higher than 10 m/s. As for the bifacial PV module, it can be noticed that the Sandia model using Bifacial optimized coefficients is very sensitive to the back surface radiation as it tends to overestimate relative to the Faiman model. Furthermore, floating PV thermal models are significantly affected by the heat transfer coefficient that usually produces a lower cell temperature.</div></div>","PeriodicalId":418,"journal":{"name":"Renewable and Sustainable Energy Reviews","volume":"216 ","pages":"Article 115627"},"PeriodicalIF":16.3000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thermal models for mono/bifacial modules in ground/floating photovoltaic systems: A review\",\"authors\":\"Amr Osama ,&nbsp;Giuseppe Marco Tina ,&nbsp;Antonio Gagliano\",\"doi\":\"10.1016/j.rser.2025.115627\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Since the world's policy tends to rely on solar energy to meet energy needs, photovoltaics are considered a crucial asset that requires continuous monitoring. Several installation solutions, including different PV technologies, created challenges in providing a reliable evaluation to depend on. Thermal modeling is essential to predict the cell temperature that is utilized in anticipating the system's electrical performance, as in most commercial software. Hence, this work provides an overview of the most used thermal models for installation solutions (free-standing, roof-mounted, floating, etc.) utilizing both mono and bifacial module technology. The provided analysis is focused on evaluating the different responses of the thermal models that can be used for the same configuration and technology. A sensitive comparative analysis of the various thermal models is provided to assess their response to the climatic parameters as an input to the thermal model. The analysis revealed that for monofacial thermal models, Ross models underestimate the cell temperature at any radiation intensity, while the Faiman model using PVsyst coefficients generates the highest overestimated cell temperature among the examined models. It can be seen that the effect of wind speed reduces for a velocity higher than 10 m/s. As for the bifacial PV module, it can be noticed that the Sandia model using Bifacial optimized coefficients is very sensitive to the back surface radiation as it tends to overestimate relative to the Faiman model. Furthermore, floating PV thermal models are significantly affected by the heat transfer coefficient that usually produces a lower cell temperature.</div></div>\",\"PeriodicalId\":418,\"journal\":{\"name\":\"Renewable and Sustainable Energy Reviews\",\"volume\":\"216 \",\"pages\":\"Article 115627\"},\"PeriodicalIF\":16.3000,\"publicationDate\":\"2025-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Renewable and Sustainable Energy Reviews\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1364032125003004\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Renewable and Sustainable Energy Reviews","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1364032125003004","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

由于世界各国的政策倾向于依靠太阳能来满足能源需求,因此光伏发电被认为是一项需要持续监测的关键资产。包括不同光伏技术在内的几种安装解决方案,在提供可靠的评估方面带来了挑战。在大多数商业软件中,热建模对于预测用于预测系统电气性能的电池温度至关重要。因此,本研究概述了使用单面和双面模块技术的最常用的安装解决方案(独立式、屋顶安装式、浮动式等)的热模型。所提供的分析侧重于评估可用于相同配置和技术的热模型的不同响应。对各种热模式进行了敏感的比较分析,以评估它们对作为热模式输入的气候参数的响应。分析表明,对于单面热模型,Ross模型低估了任何辐射强度下的细胞温度,而使用PVsyst系数的Faiman模型在所检查的模型中产生了最高的高估细胞温度。可以看出,风速大于10m /s时,风速的影响减小。对于双面光伏组件,可以注意到,使用双面优化系数的Sandia模型对后表面辐射非常敏感,相对于Faiman模型有高估的倾向。此外,浮动PV热模型受到传热系数的显著影响,通常会产生较低的电池温度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Thermal models for mono/bifacial modules in ground/floating photovoltaic systems: A review
Since the world's policy tends to rely on solar energy to meet energy needs, photovoltaics are considered a crucial asset that requires continuous monitoring. Several installation solutions, including different PV technologies, created challenges in providing a reliable evaluation to depend on. Thermal modeling is essential to predict the cell temperature that is utilized in anticipating the system's electrical performance, as in most commercial software. Hence, this work provides an overview of the most used thermal models for installation solutions (free-standing, roof-mounted, floating, etc.) utilizing both mono and bifacial module technology. The provided analysis is focused on evaluating the different responses of the thermal models that can be used for the same configuration and technology. A sensitive comparative analysis of the various thermal models is provided to assess their response to the climatic parameters as an input to the thermal model. The analysis revealed that for monofacial thermal models, Ross models underestimate the cell temperature at any radiation intensity, while the Faiman model using PVsyst coefficients generates the highest overestimated cell temperature among the examined models. It can be seen that the effect of wind speed reduces for a velocity higher than 10 m/s. As for the bifacial PV module, it can be noticed that the Sandia model using Bifacial optimized coefficients is very sensitive to the back surface radiation as it tends to overestimate relative to the Faiman model. Furthermore, floating PV thermal models are significantly affected by the heat transfer coefficient that usually produces a lower cell temperature.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Renewable and Sustainable Energy Reviews
Renewable and Sustainable Energy Reviews 工程技术-能源与燃料
CiteScore
31.20
自引率
5.70%
发文量
1055
审稿时长
62 days
期刊介绍: The mission of Renewable and Sustainable Energy Reviews is to disseminate the most compelling and pertinent critical insights in renewable and sustainable energy, fostering collaboration among the research community, private sector, and policy and decision makers. The journal aims to exchange challenges, solutions, innovative concepts, and technologies, contributing to sustainable development, the transition to a low-carbon future, and the attainment of emissions targets outlined by the United Nations Framework Convention on Climate Change. Renewable and Sustainable Energy Reviews publishes a diverse range of content, including review papers, original research, case studies, and analyses of new technologies, all featuring a substantial review component such as critique, comparison, or analysis. Introducing a distinctive paper type, Expert Insights, the journal presents commissioned mini-reviews authored by field leaders, addressing topics of significant interest. Case studies undergo consideration only if they showcase the work's applicability to other regions or contribute valuable insights to the broader field of renewable and sustainable energy. Notably, a bibliographic or literature review lacking critical analysis is deemed unsuitable for publication.
期刊最新文献
Editorial Board Review of talkative power conversion from power electronics and communication perspectives Hybrid enhancement of SOFC anodes: Integrating modulated electrical double layers and phase change materials for carbon-resilient energy conversion Photothermal heating applications in buildings: Development, challenges and optimization Next-generation paper electrodes: Linking fabrication techniques and high-performance materials for sustainable energy devices
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1