高粘度石墨烯油墨的激光诱导正向转移

IF 2.8 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Applied Physics A Pub Date : 2025-03-28 DOI:10.1007/s00339-025-08433-x
Dawood Dilmy, Anvesh Gaddam, Gerard Cummins, Stefan Dimov
{"title":"高粘度石墨烯油墨的激光诱导正向转移","authors":"Dawood Dilmy,&nbsp;Anvesh Gaddam,&nbsp;Gerard Cummins,&nbsp;Stefan Dimov","doi":"10.1007/s00339-025-08433-x","DOIUrl":null,"url":null,"abstract":"<div><p>Laser-induced forward transfer (LIFT) is gaining significant attention as a non-contact printing technique for high-viscosity conductive inks in printed electronics. However, the high wet thickness of printed tracks is essential for achieving effective electrical pathways, a requirement that has not been thoroughly considered so far. The wet thickness is a function of ink viscosity, substrate wettability, and the laser processing parameters. In this study, the printing mechanism of conductive graphene inks with viscosities ranging from 1 to 15 Pa.s using LIFT was investigated. The effects of pulse energy (30 to 120 µJ) and gap distance (50 to 300 μm) in printing voxels with a green nanosecond laser were systematically examined, providing a phenomenological understanding of the material transfer mechanism. The findings highlight the significant role of the temporal pulse distance in enhancing the wet thickness achievable during LIFT of high-viscosity inks, attributed to capillary healing phenomena. Additionally, the acceptor substrates’ hydrophobicity was found to increase the wet thickness and improve the resolution of the printed voxels/tracks. Especially, the aspect ratio of LIFT-printed tracks was increased by more than 175% with 10 printing passes when a hydrophobic accepter was used. So, the optimal LIFT processing conditions were identified to achieve high-quality, high-aspect-ratio tracks, by considering synergistically the effects of the temporal pulse distance and the substrate wettability. Moreover, the resistivity of the LIFT-printed graphene tracks decreased by more than 84% after a 100-minute sintering step at 120 °C. This research advances understanding of LIFT printing high-viscosity conductive inks, particularly underpinning the development of high-resolution and high-aspect-ratio electrical circuits for printed electronics.</p></div>","PeriodicalId":473,"journal":{"name":"Applied Physics A","volume":"131 4","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00339-025-08433-x.pdf","citationCount":"0","resultStr":"{\"title\":\"Laser-induced forward transfer of high viscosity graphene inks\",\"authors\":\"Dawood Dilmy,&nbsp;Anvesh Gaddam,&nbsp;Gerard Cummins,&nbsp;Stefan Dimov\",\"doi\":\"10.1007/s00339-025-08433-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Laser-induced forward transfer (LIFT) is gaining significant attention as a non-contact printing technique for high-viscosity conductive inks in printed electronics. However, the high wet thickness of printed tracks is essential for achieving effective electrical pathways, a requirement that has not been thoroughly considered so far. The wet thickness is a function of ink viscosity, substrate wettability, and the laser processing parameters. In this study, the printing mechanism of conductive graphene inks with viscosities ranging from 1 to 15 Pa.s using LIFT was investigated. The effects of pulse energy (30 to 120 µJ) and gap distance (50 to 300 μm) in printing voxels with a green nanosecond laser were systematically examined, providing a phenomenological understanding of the material transfer mechanism. The findings highlight the significant role of the temporal pulse distance in enhancing the wet thickness achievable during LIFT of high-viscosity inks, attributed to capillary healing phenomena. Additionally, the acceptor substrates’ hydrophobicity was found to increase the wet thickness and improve the resolution of the printed voxels/tracks. Especially, the aspect ratio of LIFT-printed tracks was increased by more than 175% with 10 printing passes when a hydrophobic accepter was used. So, the optimal LIFT processing conditions were identified to achieve high-quality, high-aspect-ratio tracks, by considering synergistically the effects of the temporal pulse distance and the substrate wettability. Moreover, the resistivity of the LIFT-printed graphene tracks decreased by more than 84% after a 100-minute sintering step at 120 °C. This research advances understanding of LIFT printing high-viscosity conductive inks, particularly underpinning the development of high-resolution and high-aspect-ratio electrical circuits for printed electronics.</p></div>\",\"PeriodicalId\":473,\"journal\":{\"name\":\"Applied Physics A\",\"volume\":\"131 4\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00339-025-08433-x.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Physics A\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00339-025-08433-x\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Physics A","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1007/s00339-025-08433-x","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

激光诱导正向转移(LIFT)作为一种用于高粘度导电油墨的非接触印刷技术,在印刷电子领域受到越来越多的关注。然而,印刷轨道的高湿厚度对于实现有效的电通路是必不可少的,到目前为止还没有完全考虑到这一要求。湿厚度是油墨粘度、承印物润湿性和激光加工参数的函数。在本研究中,研究了黏度为1 ~ 15pa的导电石墨烯油墨的印刷机理。用LIFT进行了研究。系统研究了脉冲能量(30 ~ 120µJ)和间隙距离(50 ~ 300 μm)对绿色纳秒激光打印体素的影响,为材料传递机制提供了现象学上的理解。研究结果强调了时间脉冲距离在提高高粘度油墨在LIFT过程中可实现的湿厚度方面的重要作用,这归因于毛细管愈合现象。此外,发现受体衬底的疏水性增加了湿厚度,提高了打印体素/轨迹的分辨率。特别是使用疏水受体,10次打印后,lift打印轨迹的长宽比提高了175%以上。因此,通过考虑时间脉冲距离和衬底润湿性的协同影响,确定了获得高质量、高纵横比轨迹的最佳LIFT处理条件。此外,在120°C下烧结100分钟后,lift打印的石墨烯轨道的电阻率下降了84%以上。这项研究促进了人们对LIFT印刷高粘度导电油墨的理解,特别是为印刷电子产品的高分辨率和高纵横比电路的发展奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Laser-induced forward transfer of high viscosity graphene inks

Laser-induced forward transfer (LIFT) is gaining significant attention as a non-contact printing technique for high-viscosity conductive inks in printed electronics. However, the high wet thickness of printed tracks is essential for achieving effective electrical pathways, a requirement that has not been thoroughly considered so far. The wet thickness is a function of ink viscosity, substrate wettability, and the laser processing parameters. In this study, the printing mechanism of conductive graphene inks with viscosities ranging from 1 to 15 Pa.s using LIFT was investigated. The effects of pulse energy (30 to 120 µJ) and gap distance (50 to 300 μm) in printing voxels with a green nanosecond laser were systematically examined, providing a phenomenological understanding of the material transfer mechanism. The findings highlight the significant role of the temporal pulse distance in enhancing the wet thickness achievable during LIFT of high-viscosity inks, attributed to capillary healing phenomena. Additionally, the acceptor substrates’ hydrophobicity was found to increase the wet thickness and improve the resolution of the printed voxels/tracks. Especially, the aspect ratio of LIFT-printed tracks was increased by more than 175% with 10 printing passes when a hydrophobic accepter was used. So, the optimal LIFT processing conditions were identified to achieve high-quality, high-aspect-ratio tracks, by considering synergistically the effects of the temporal pulse distance and the substrate wettability. Moreover, the resistivity of the LIFT-printed graphene tracks decreased by more than 84% after a 100-minute sintering step at 120 °C. This research advances understanding of LIFT printing high-viscosity conductive inks, particularly underpinning the development of high-resolution and high-aspect-ratio electrical circuits for printed electronics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Physics A
Applied Physics A 工程技术-材料科学:综合
CiteScore
4.80
自引率
7.40%
发文量
964
审稿时长
38 days
期刊介绍: Applied Physics A publishes experimental and theoretical investigations in applied physics as regular articles, rapid communications, and invited papers. The distinguished 30-member Board of Editors reflects the interdisciplinary approach of the journal and ensures the highest quality of peer review.
期刊最新文献
Mechanistic Insights into Ta/Mn Co-Modification for Stable X9R 0.88BaTiO3-0.12Bi1/2Na1/2TiO3 Dielectrics with Reduced High-Temperature Dielectric Loss Application of combined Laser Ablation and TXRF methods for columbite-tantalite analysis from Aguamena, Venezuela Theoretical probing, microcontroller implementation, and medical image encryption of a quadratically damped Josephson junction circuit oscillating with strictly the \(4\pi\)-periodic superconducting current Direct laser-induced graphene formation on konjac-glucomannan and its molecular dynamics simulations : toward soluble electrochemical sensors Structure of high-tilt YBa2Cu3Ox thin films by pulsed laser deposition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1