基于DFT和SCAPS模拟的新型锑基太阳能电池设计

IF 2.5 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Journal of Computational Electronics Pub Date : 2025-03-28 DOI:10.1007/s10825-025-02308-3
Xiaoyu Yu, Qiaoxia Gao
{"title":"基于DFT和SCAPS模拟的新型锑基太阳能电池设计","authors":"Xiaoyu Yu,&nbsp;Qiaoxia Gao","doi":"10.1007/s10825-025-02308-3","DOIUrl":null,"url":null,"abstract":"<div><p>Exploring novel light-harvesting materials with excellent optoelectronic properties is crucial for photovoltaic technology. In this work, we investigate the optoelectronic properties of antimony selenides Na3SbSe4 using first-principles calculations and evaluate their photovoltaic potential by device simulations. The hybrid functionals predict a direct band gap of approximately 1.7 eV and effective masses of 0.549 <i>m</i><sub>0</sub> for electron and 0.591 <i>m</i><sub>0</sub> for hole. The light absorption coefficient is estimated to reach 10<sup>5</sup> cm<sup>−1</sup> in the visible light range. Based on the spectroscopic limited maximum efficiency method, the power conversion efficiency is predicted to approach 19.58% with a thickness of 0.5 µm for light-harvesting material, revealing the excellent photovoltaic properties of Na<sub>3</sub>SbSe<sub>4</sub>. Device simulations further confirm that the solar cell with a device configuration of ZnO/Na<sub>3</sub>SbSe<sub>4</sub>/PEDOT:PSS can achieve an efficiency of 16.45%. Moreover, increasing the thickness of the light-absorbing layer and controlling the defect concentration can improve efficiency. These results can be significant theoretical guidance for the development of novel optoelectronic materials.</p></div>","PeriodicalId":620,"journal":{"name":"Journal of Computational Electronics","volume":"24 2","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design of a novel antimony-based solar cell by DFT and SCAPS simulation\",\"authors\":\"Xiaoyu Yu,&nbsp;Qiaoxia Gao\",\"doi\":\"10.1007/s10825-025-02308-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Exploring novel light-harvesting materials with excellent optoelectronic properties is crucial for photovoltaic technology. In this work, we investigate the optoelectronic properties of antimony selenides Na3SbSe4 using first-principles calculations and evaluate their photovoltaic potential by device simulations. The hybrid functionals predict a direct band gap of approximately 1.7 eV and effective masses of 0.549 <i>m</i><sub>0</sub> for electron and 0.591 <i>m</i><sub>0</sub> for hole. The light absorption coefficient is estimated to reach 10<sup>5</sup> cm<sup>−1</sup> in the visible light range. Based on the spectroscopic limited maximum efficiency method, the power conversion efficiency is predicted to approach 19.58% with a thickness of 0.5 µm for light-harvesting material, revealing the excellent photovoltaic properties of Na<sub>3</sub>SbSe<sub>4</sub>. Device simulations further confirm that the solar cell with a device configuration of ZnO/Na<sub>3</sub>SbSe<sub>4</sub>/PEDOT:PSS can achieve an efficiency of 16.45%. Moreover, increasing the thickness of the light-absorbing layer and controlling the defect concentration can improve efficiency. These results can be significant theoretical guidance for the development of novel optoelectronic materials.</p></div>\",\"PeriodicalId\":620,\"journal\":{\"name\":\"Journal of Computational Electronics\",\"volume\":\"24 2\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational Electronics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10825-025-02308-3\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Electronics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10825-025-02308-3","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

探索具有优异光电性能的新型光收集材料对光伏技术至关重要。在这项工作中,我们利用第一性原理计算研究了硒化锑Na3SbSe4的光电特性,并通过器件模拟评估了它们的光伏势。杂化泛函预测直接带隙约为1.7 eV,电子和空穴的有效质量分别为0.549 m0和0.591 m0。在可见光范围内,光吸收系数可达105 cm−1。基于光谱限制最大效率法,预测光收集材料厚度为0.5µm时,功率转换效率接近19.58%,揭示了Na3SbSe4优异的光伏性能。器件仿真进一步证实,采用ZnO/Na3SbSe4/PEDOT:PSS器件结构的太阳能电池效率可达16.45%。此外,增加吸光层厚度和控制缺陷浓度可以提高效率。这些结果对新型光电材料的开发具有重要的理论指导意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Design of a novel antimony-based solar cell by DFT and SCAPS simulation

Exploring novel light-harvesting materials with excellent optoelectronic properties is crucial for photovoltaic technology. In this work, we investigate the optoelectronic properties of antimony selenides Na3SbSe4 using first-principles calculations and evaluate their photovoltaic potential by device simulations. The hybrid functionals predict a direct band gap of approximately 1.7 eV and effective masses of 0.549 m0 for electron and 0.591 m0 for hole. The light absorption coefficient is estimated to reach 105 cm−1 in the visible light range. Based on the spectroscopic limited maximum efficiency method, the power conversion efficiency is predicted to approach 19.58% with a thickness of 0.5 µm for light-harvesting material, revealing the excellent photovoltaic properties of Na3SbSe4. Device simulations further confirm that the solar cell with a device configuration of ZnO/Na3SbSe4/PEDOT:PSS can achieve an efficiency of 16.45%. Moreover, increasing the thickness of the light-absorbing layer and controlling the defect concentration can improve efficiency. These results can be significant theoretical guidance for the development of novel optoelectronic materials.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Computational Electronics
Journal of Computational Electronics ENGINEERING, ELECTRICAL & ELECTRONIC-PHYSICS, APPLIED
CiteScore
4.50
自引率
4.80%
发文量
142
审稿时长
>12 weeks
期刊介绍: he Journal of Computational Electronics brings together research on all aspects of modeling and simulation of modern electronics. This includes optical, electronic, mechanical, and quantum mechanical aspects, as well as research on the underlying mathematical algorithms and computational details. The related areas of energy conversion/storage and of molecular and biological systems, in which the thrust is on the charge transport, electronic, mechanical, and optical properties, are also covered. In particular, we encourage manuscripts dealing with device simulation; with optical and optoelectronic systems and photonics; with energy storage (e.g. batteries, fuel cells) and harvesting (e.g. photovoltaic), with simulation of circuits, VLSI layout, logic and architecture (based on, for example, CMOS devices, quantum-cellular automata, QBITs, or single-electron transistors); with electromagnetic simulations (such as microwave electronics and components); or with molecular and biological systems. However, in all these cases, the submitted manuscripts should explicitly address the electronic properties of the relevant systems, materials, or devices and/or present novel contributions to the physical models, computational strategies, or numerical algorithms.
期刊最新文献
A simulation approach for improvement of contact resistance in organic field-effect transistors by modification of the contact interface using an organic buffer layer Compact multifilamentary circuit-level model for multilevel bipolar resistive switching in memristors Advanced θ-method for modeling crosstalk and propagation delay for multiple coupled hybrid Cu–CNT interconnects in time domain Numerical simulation of single-event burnout effects in p-GaN gate HEMTS AlGaAs-based Semi-Stampfli photonic quasi-crystal fiber for mid-IR supercontinuum generation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1