新型GQDs和CuO修饰TiO2基异质结构光催化剂协同增强PEC制氢

IF 4.7 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Materials Chemistry and Physics Pub Date : 2025-03-27 DOI:10.1016/j.matchemphys.2025.130781
Farman Ullah , Beh Hoe Guan , Mudasar Zafar , Noor e Hira , Hizbullah Khan , Mohamed Shuaib Mohamed Saheed
{"title":"新型GQDs和CuO修饰TiO2基异质结构光催化剂协同增强PEC制氢","authors":"Farman Ullah ,&nbsp;Beh Hoe Guan ,&nbsp;Mudasar Zafar ,&nbsp;Noor e Hira ,&nbsp;Hizbullah Khan ,&nbsp;Mohamed Shuaib Mohamed Saheed","doi":"10.1016/j.matchemphys.2025.130781","DOIUrl":null,"url":null,"abstract":"<div><div>Photoelectrochemical (PEC) water splitting technique is one of the most promising, cost-effective, and environmentally friendly techniques for solar H<sub>2</sub> production. However, the widely accepted TiO<sub>2</sub> semiconductor photocatalyst for a PEC system portrays less visible light absorption due to its wide bandgap and rapid recombination of e<sup>−</sup>/h<sup>+</sup> pairs that ultimately lead to its low hydrogen production efficiency. Herein this work, heterostructure graphene quantum dots (GQDs) and cupric oxide (CuO) modified TiO<sub>2</sub> based photocatalyst were prepared to elucidate the optoelectronic and charge transfer properties of the TiO<sub>2</sub> based photocatalysts to enhance their photocatalytic performances. The GQD and CuO modified TiO<sub>2</sub> based photocatalysts were synthesized via hydrothermal synthesis technique at calcination temperature of 450 °C for calcination durations up to 3 h. The effect of the dopants was investigated on various physiochemical properties including structural, morphological, chemical, elemental, optoelectronic and as well as, photoelectrochemical properties. The developed CuO/GQD@TiO<sub>2</sub> heterostructure photocatalyst presented the lowest energy bandgap (2.16 eV), enhanced visible light absorption (up to ∼745 nm), and reduced recombination of the charge carriers. The optimized tri-layered novel CuO/GQD@TiO<sub>2</sub> photocatalyst demonstrated maximum H<sub>2</sub> production up to 34,466 μmol g<sup>−1</sup>h<sup>−1</sup> with photoconversion efficiency ∼9.01 %. Overall, the presented mechanistic insight and targeted strategy of incorporating CuO and GQD into TiO<sub>2</sub> photocatalyst provides a fresh perspective in producing H<sub>2</sub> efficiently using PEC approach.</div></div>","PeriodicalId":18227,"journal":{"name":"Materials Chemistry and Physics","volume":"340 ","pages":"Article 130781"},"PeriodicalIF":4.7000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synergistic enhancement in PEC hydrogen production using novel GQDs and CuO modified TiO2 based heterostructure photocatalyst\",\"authors\":\"Farman Ullah ,&nbsp;Beh Hoe Guan ,&nbsp;Mudasar Zafar ,&nbsp;Noor e Hira ,&nbsp;Hizbullah Khan ,&nbsp;Mohamed Shuaib Mohamed Saheed\",\"doi\":\"10.1016/j.matchemphys.2025.130781\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Photoelectrochemical (PEC) water splitting technique is one of the most promising, cost-effective, and environmentally friendly techniques for solar H<sub>2</sub> production. However, the widely accepted TiO<sub>2</sub> semiconductor photocatalyst for a PEC system portrays less visible light absorption due to its wide bandgap and rapid recombination of e<sup>−</sup>/h<sup>+</sup> pairs that ultimately lead to its low hydrogen production efficiency. Herein this work, heterostructure graphene quantum dots (GQDs) and cupric oxide (CuO) modified TiO<sub>2</sub> based photocatalyst were prepared to elucidate the optoelectronic and charge transfer properties of the TiO<sub>2</sub> based photocatalysts to enhance their photocatalytic performances. The GQD and CuO modified TiO<sub>2</sub> based photocatalysts were synthesized via hydrothermal synthesis technique at calcination temperature of 450 °C for calcination durations up to 3 h. The effect of the dopants was investigated on various physiochemical properties including structural, morphological, chemical, elemental, optoelectronic and as well as, photoelectrochemical properties. The developed CuO/GQD@TiO<sub>2</sub> heterostructure photocatalyst presented the lowest energy bandgap (2.16 eV), enhanced visible light absorption (up to ∼745 nm), and reduced recombination of the charge carriers. The optimized tri-layered novel CuO/GQD@TiO<sub>2</sub> photocatalyst demonstrated maximum H<sub>2</sub> production up to 34,466 μmol g<sup>−1</sup>h<sup>−1</sup> with photoconversion efficiency ∼9.01 %. Overall, the presented mechanistic insight and targeted strategy of incorporating CuO and GQD into TiO<sub>2</sub> photocatalyst provides a fresh perspective in producing H<sub>2</sub> efficiently using PEC approach.</div></div>\",\"PeriodicalId\":18227,\"journal\":{\"name\":\"Materials Chemistry and Physics\",\"volume\":\"340 \",\"pages\":\"Article 130781\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2025-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Chemistry and Physics\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0254058425004274\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Chemistry and Physics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0254058425004274","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

光电化学(PEC)水分解技术是太阳能制氢技术中最有前途、最经济、最环保的技术之一。然而,广泛接受的用于PEC系统的TiO2半导体光催化剂由于其宽带隙和e - /h+对的快速重组,最终导致其低产氢效率,从而导致较少的可见光吸收。本文制备了异质结构石墨烯量子点(GQDs)和氧化铜(CuO)修饰的TiO2基光催化剂,阐明了TiO2基光催化剂的光电和电荷转移性质,以提高其光催化性能。采用水热合成技术,在450℃的煅烧温度下合成了GQD和CuO修饰的TiO2基光催化剂,煅烧时间长达3 h。研究了掺杂剂对TiO2基光催化剂的结构、形态、化学、元素、光电和光电电化学等理化性能的影响。所开发的CuO/GQD@TiO2异质结构光催化剂具有最低的能带隙(2.16 eV),增强可见光吸收(高达~ 745 nm),并减少载流子的重组。优化后的新型三层CuO/GQD@TiO2光催化剂最大产氢量可达34,466 μmol g−1h−1,光转化效率为9.01%。总的来说,本文提出的将CuO和GQD结合到TiO2光催化剂中的机理和有针对性的策略为利用PEC方法高效生产H2提供了新的视角。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Synergistic enhancement in PEC hydrogen production using novel GQDs and CuO modified TiO2 based heterostructure photocatalyst
Photoelectrochemical (PEC) water splitting technique is one of the most promising, cost-effective, and environmentally friendly techniques for solar H2 production. However, the widely accepted TiO2 semiconductor photocatalyst for a PEC system portrays less visible light absorption due to its wide bandgap and rapid recombination of e/h+ pairs that ultimately lead to its low hydrogen production efficiency. Herein this work, heterostructure graphene quantum dots (GQDs) and cupric oxide (CuO) modified TiO2 based photocatalyst were prepared to elucidate the optoelectronic and charge transfer properties of the TiO2 based photocatalysts to enhance their photocatalytic performances. The GQD and CuO modified TiO2 based photocatalysts were synthesized via hydrothermal synthesis technique at calcination temperature of 450 °C for calcination durations up to 3 h. The effect of the dopants was investigated on various physiochemical properties including structural, morphological, chemical, elemental, optoelectronic and as well as, photoelectrochemical properties. The developed CuO/GQD@TiO2 heterostructure photocatalyst presented the lowest energy bandgap (2.16 eV), enhanced visible light absorption (up to ∼745 nm), and reduced recombination of the charge carriers. The optimized tri-layered novel CuO/GQD@TiO2 photocatalyst demonstrated maximum H2 production up to 34,466 μmol g−1h−1 with photoconversion efficiency ∼9.01 %. Overall, the presented mechanistic insight and targeted strategy of incorporating CuO and GQD into TiO2 photocatalyst provides a fresh perspective in producing H2 efficiently using PEC approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Chemistry and Physics
Materials Chemistry and Physics 工程技术-材料科学:综合
CiteScore
8.70
自引率
4.30%
发文量
1515
审稿时长
69 days
期刊介绍: Materials Chemistry and Physics is devoted to short communications, full-length research papers and feature articles on interrelationships among structure, properties, processing and performance of materials. The Editors welcome manuscripts on thin films, surface and interface science, materials degradation and reliability, metallurgy, semiconductors and optoelectronic materials, fine ceramics, magnetics, superconductors, specialty polymers, nano-materials and composite materials.
期刊最新文献
Probing hard carbon fiber fabric synthesized by CO2 laser for Na-ion battery anodes Acetone sensing mechanism of SnO2:WO3 5 % operated under high-humidity atmospheres Corrosion behaviour of Fe–rGO composites in PBS versus protein-enriched media Hydrothermal synthesis of Ag/Ni15O16 nanocomposite: Exploiting green chemistry for environmental and biomedical applications Simple template-free method for the controllable synthesis of highly crystalline ZSM-5 molecular sieve
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1