fenton -混凝法同时处理废水中的微污染物和溶解性有机碳

IF 12.4 1区 环境科学与生态学 Q1 ENGINEERING, ENVIRONMENTAL Water Research Pub Date : 2025-03-31 DOI:10.1016/j.watres.2025.123583
Cheolyong Kim , Philipp Debusmann , Mohammad Sajjad Abdighahroudi , Jochen Schumacher , Holger V. Lutze
{"title":"fenton -混凝法同时处理废水中的微污染物和溶解性有机碳","authors":"Cheolyong Kim ,&nbsp;Philipp Debusmann ,&nbsp;Mohammad Sajjad Abdighahroudi ,&nbsp;Jochen Schumacher ,&nbsp;Holger V. Lutze","doi":"10.1016/j.watres.2025.123583","DOIUrl":null,"url":null,"abstract":"<div><div>This study demonstrates the integration of the Fenton reaction into the flocculation process at circumneutral pH (6–7), offering a practical approach for simultaneous micropollutant and organic matter removal in wastewater treatment. Unlike conventional Fenton oxidation, which requires acidic conditions, this approach allows Fe(II) to react with hydrogen peroxide at near-neutral pH, forming Fe(III) flocs that enhance flocculation while also generating reactive species for pollutant degradation. At pH 6, hydroxyl radicals were the dominant oxidants, whereas at pH 7, additional reactive species likely contributed to micropollutant removal. Bisphenol A and benzoic acid were removed by approximately 90% at 1 mM peroxide and 2 mM iron. In addition to micropollutant degradation, the Fenton-coagulation process achieved substantial dissolved organic carbon (DOC) removal, which was not observed with Fenton oxidation alone or ozonation. DOC removal was up to 51% in Suwannee River Natural Organic Matter solutions, whereas only 30% of DOC was removed from municipal wastewater effluent, likely due to differences in organic matter composition. These findings highlight the potential of Fenton-coagulation as an effective and scalable treatment strategy for wastewater reuse, improving both pollutant degradation and organic matter removal under practical conditions.</div></div>","PeriodicalId":443,"journal":{"name":"Water Research","volume":"281 ","pages":"Article 123583"},"PeriodicalIF":12.4000,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fenton–coagulation process for simultaneous abatement of micropollutants and dissolved organic carbon in treated wastewater\",\"authors\":\"Cheolyong Kim ,&nbsp;Philipp Debusmann ,&nbsp;Mohammad Sajjad Abdighahroudi ,&nbsp;Jochen Schumacher ,&nbsp;Holger V. Lutze\",\"doi\":\"10.1016/j.watres.2025.123583\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study demonstrates the integration of the Fenton reaction into the flocculation process at circumneutral pH (6–7), offering a practical approach for simultaneous micropollutant and organic matter removal in wastewater treatment. Unlike conventional Fenton oxidation, which requires acidic conditions, this approach allows Fe(II) to react with hydrogen peroxide at near-neutral pH, forming Fe(III) flocs that enhance flocculation while also generating reactive species for pollutant degradation. At pH 6, hydroxyl radicals were the dominant oxidants, whereas at pH 7, additional reactive species likely contributed to micropollutant removal. Bisphenol A and benzoic acid were removed by approximately 90% at 1 mM peroxide and 2 mM iron. In addition to micropollutant degradation, the Fenton-coagulation process achieved substantial dissolved organic carbon (DOC) removal, which was not observed with Fenton oxidation alone or ozonation. DOC removal was up to 51% in Suwannee River Natural Organic Matter solutions, whereas only 30% of DOC was removed from municipal wastewater effluent, likely due to differences in organic matter composition. These findings highlight the potential of Fenton-coagulation as an effective and scalable treatment strategy for wastewater reuse, improving both pollutant degradation and organic matter removal under practical conditions.</div></div>\",\"PeriodicalId\":443,\"journal\":{\"name\":\"Water Research\",\"volume\":\"281 \",\"pages\":\"Article 123583\"},\"PeriodicalIF\":12.4000,\"publicationDate\":\"2025-03-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Water Research\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0043135425004968\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Research","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0043135425004968","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

本研究展示了将Fenton反应整合到环中性pH(6-7)的絮凝过程中,为废水处理中同时去除微污染物和有机物提供了一种实用的方法。与需要酸性条件的传统芬顿氧化不同,这种方法允许铁(II)在接近中性的pH值下与过氧化氢反应,形成铁(III)絮凝体,增强絮凝作用,同时也产生用于污染物降解的活性物质。在pH值为6时,羟基自由基是主要的氧化剂,而在pH值为7时,额外的活性物质可能有助于微污染物的去除。双酚A和苯甲酸在1mm过氧化氢和2mm铁条件下去除率约为90%。除微污染物降解外,Fenton-混凝工艺还实现了大量溶解性有机碳(DOC)的去除,这是单独Fenton氧化或臭氧氧化所无法观察到的。在Suwannee河天然有机物(NOM)溶液中,DOC去除率高达51%,而在城市污水中,DOC去除率仅为30%,可能是由于有机物组成的差异。这些发现突出了Fenton-coagulation作为一种有效且可扩展的废水回用处理策略的潜力,在实际条件下可以改善污染物降解和有机物去除。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fenton–coagulation process for simultaneous abatement of micropollutants and dissolved organic carbon in treated wastewater
This study demonstrates the integration of the Fenton reaction into the flocculation process at circumneutral pH (6–7), offering a practical approach for simultaneous micropollutant and organic matter removal in wastewater treatment. Unlike conventional Fenton oxidation, which requires acidic conditions, this approach allows Fe(II) to react with hydrogen peroxide at near-neutral pH, forming Fe(III) flocs that enhance flocculation while also generating reactive species for pollutant degradation. At pH 6, hydroxyl radicals were the dominant oxidants, whereas at pH 7, additional reactive species likely contributed to micropollutant removal. Bisphenol A and benzoic acid were removed by approximately 90% at 1 mM peroxide and 2 mM iron. In addition to micropollutant degradation, the Fenton-coagulation process achieved substantial dissolved organic carbon (DOC) removal, which was not observed with Fenton oxidation alone or ozonation. DOC removal was up to 51% in Suwannee River Natural Organic Matter solutions, whereas only 30% of DOC was removed from municipal wastewater effluent, likely due to differences in organic matter composition. These findings highlight the potential of Fenton-coagulation as an effective and scalable treatment strategy for wastewater reuse, improving both pollutant degradation and organic matter removal under practical conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Water Research
Water Research 环境科学-工程:环境
CiteScore
20.80
自引率
9.40%
发文量
1307
审稿时长
38 days
期刊介绍: Water Research, along with its open access companion journal Water Research X, serves as a platform for publishing original research papers covering various aspects of the science and technology related to the anthropogenic water cycle, water quality, and its management worldwide. The audience targeted by the journal comprises biologists, chemical engineers, chemists, civil engineers, environmental engineers, limnologists, and microbiologists. The scope of the journal include: •Treatment processes for water and wastewaters (municipal, agricultural, industrial, and on-site treatment), including resource recovery and residuals management; •Urban hydrology including sewer systems, stormwater management, and green infrastructure; •Drinking water treatment and distribution; •Potable and non-potable water reuse; •Sanitation, public health, and risk assessment; •Anaerobic digestion, solid and hazardous waste management, including source characterization and the effects and control of leachates and gaseous emissions; •Contaminants (chemical, microbial, anthropogenic particles such as nanoparticles or microplastics) and related water quality sensing, monitoring, fate, and assessment; •Anthropogenic impacts on inland, tidal, coastal and urban waters, focusing on surface and ground waters, and point and non-point sources of pollution; •Environmental restoration, linked to surface water, groundwater and groundwater remediation; •Analysis of the interfaces between sediments and water, and between water and atmosphere, focusing specifically on anthropogenic impacts; •Mathematical modelling, systems analysis, machine learning, and beneficial use of big data related to the anthropogenic water cycle; •Socio-economic, policy, and regulations studies.
期刊最新文献
Influence of Clay Mineral Type and Particle-to-Oil Ratio on the Transport and Deposition of Oil-Particle Aggregates in Coastal Porous Media Rewiring Biogeochemical Interactions: How Interbasin Water Transfers Shape DOM-Microbe Dynamics Revealing the unrecognized climate burden of aquaculture systems: A global insight into greenhouse gas emissions and mitigation strategies Characteristics of phosphorus-solubilizing bacteria and mediated phosphorus cycle in sediments of urban river-lake interfaces Ultra-high efficiency simultaneous nitritation, denitritation and phosphorus removal from digestate centrate using calcium-enhanced aerobic granular sludge
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1