Ali H. Bashal , Mohammed A.H. Khalafalla , Rafat M. Ibrahim
{"title":"钴加入对镍-膨润土复合材料介电性能影响的实验和半经验量子研究","authors":"Ali H. Bashal , Mohammed A.H. Khalafalla , Rafat M. Ibrahim","doi":"10.1016/j.jics.2025.101696","DOIUrl":null,"url":null,"abstract":"<div><div>This paper presents the preparation and characterization of pure and metallically supported bentonite with different percentages of Co (1 % wt.) and Ni (5 % wt.). The preparation used the wet impregnation process method. The resulting composites were characterized by X-ray diffraction (XRD), and scanning electron microscopy (SEM) with energy dispersive X-ray spectroscopy (EDX) analysis. These characterizations indicated the greater metallic Co/Ni dispersion and higher specific surface area for the resulting composite. Moreover, the metallic nanoparticles in 1 %Co -5 %Ni/Bentonite have an intermediate dimension between that of 0 %Co–5 %Ni/Bentonite and 1 %Co–0 %Ni/Bentonite composites. Such intermediacy in the nanostructure of 1 %Co–5 %Ni/Bentonite may be associated with its measured dielectric properties characterized by the least permittivity and loss factor as compared to 0 %Co–5 %Ni/Bentonite and 1 %Co–0 %Ni/Bentonite. Interestingly, our semiempirical quantum calculations revealed that 1 %Co–5 %Ni/Bentonite has intermediate electrochemical properties (hardness and electronegativity) relative to those for 0 %Co–5 %Ni/Bentonite and 1 %Co–0 %Ni/Bentonite, indicating the optimal reactivity of 1 %Co–5 %Ni/Bentonite. Our results are, thus, pertinent to catalysis and other applications pursuing optimal electrochemical properties of Ni/Bentonite.</div></div>","PeriodicalId":17276,"journal":{"name":"Journal of the Indian Chemical Society","volume":"102 5","pages":"Article 101696"},"PeriodicalIF":3.4000,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental and semiempirical quantum investigations of the effect of Cobalt addition on the dielectric properties of Nickle-Bentonite composite\",\"authors\":\"Ali H. Bashal , Mohammed A.H. Khalafalla , Rafat M. Ibrahim\",\"doi\":\"10.1016/j.jics.2025.101696\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper presents the preparation and characterization of pure and metallically supported bentonite with different percentages of Co (1 % wt.) and Ni (5 % wt.). The preparation used the wet impregnation process method. The resulting composites were characterized by X-ray diffraction (XRD), and scanning electron microscopy (SEM) with energy dispersive X-ray spectroscopy (EDX) analysis. These characterizations indicated the greater metallic Co/Ni dispersion and higher specific surface area for the resulting composite. Moreover, the metallic nanoparticles in 1 %Co -5 %Ni/Bentonite have an intermediate dimension between that of 0 %Co–5 %Ni/Bentonite and 1 %Co–0 %Ni/Bentonite composites. Such intermediacy in the nanostructure of 1 %Co–5 %Ni/Bentonite may be associated with its measured dielectric properties characterized by the least permittivity and loss factor as compared to 0 %Co–5 %Ni/Bentonite and 1 %Co–0 %Ni/Bentonite. Interestingly, our semiempirical quantum calculations revealed that 1 %Co–5 %Ni/Bentonite has intermediate electrochemical properties (hardness and electronegativity) relative to those for 0 %Co–5 %Ni/Bentonite and 1 %Co–0 %Ni/Bentonite, indicating the optimal reactivity of 1 %Co–5 %Ni/Bentonite. Our results are, thus, pertinent to catalysis and other applications pursuing optimal electrochemical properties of Ni/Bentonite.</div></div>\",\"PeriodicalId\":17276,\"journal\":{\"name\":\"Journal of the Indian Chemical Society\",\"volume\":\"102 5\",\"pages\":\"Article 101696\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-03-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Indian Chemical Society\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0019452225001311\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Indian Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0019452225001311","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
本文介绍了不同比例Co (1% wt.)和Ni (5% wt.)的纯金属负载膨润土的制备和表征。制备采用湿浸渍法。通过x射线衍射(XRD)、扫描电子显微镜(SEM)和能量色散x射线能谱(EDX)分析对复合材料进行了表征。这些表征表明,所得到的复合材料具有更高的金属Co/Ni分散性和更高的比表面积。此外,1% Co - 5% Ni/膨润土中的金属纳米颗粒具有介于0% Co - 5% Ni/膨润土和1% Co - 0% Ni/膨润土复合材料之间的中间尺寸。与0% Co-5 %Ni/膨润土和1% Co-0 %Ni/膨润土相比,1% Co-5 %Ni/膨润土纳米结构中的这种中间体可能与其测量的介电常数和损耗因子最小有关。有趣的是,我们的半经验量子计算表明,相对于0% co - 5% Ni/膨润土和1% co - 0% Ni/膨润土,1% co - 5% Ni/膨润土具有中等的电化学性能(硬度和电负性),表明1% co - 5% Ni/膨润土的最佳反应性。因此,我们的研究结果与催化和其他追求镍/膨润土最佳电化学性能的应用有关。
Experimental and semiempirical quantum investigations of the effect of Cobalt addition on the dielectric properties of Nickle-Bentonite composite
This paper presents the preparation and characterization of pure and metallically supported bentonite with different percentages of Co (1 % wt.) and Ni (5 % wt.). The preparation used the wet impregnation process method. The resulting composites were characterized by X-ray diffraction (XRD), and scanning electron microscopy (SEM) with energy dispersive X-ray spectroscopy (EDX) analysis. These characterizations indicated the greater metallic Co/Ni dispersion and higher specific surface area for the resulting composite. Moreover, the metallic nanoparticles in 1 %Co -5 %Ni/Bentonite have an intermediate dimension between that of 0 %Co–5 %Ni/Bentonite and 1 %Co–0 %Ni/Bentonite composites. Such intermediacy in the nanostructure of 1 %Co–5 %Ni/Bentonite may be associated with its measured dielectric properties characterized by the least permittivity and loss factor as compared to 0 %Co–5 %Ni/Bentonite and 1 %Co–0 %Ni/Bentonite. Interestingly, our semiempirical quantum calculations revealed that 1 %Co–5 %Ni/Bentonite has intermediate electrochemical properties (hardness and electronegativity) relative to those for 0 %Co–5 %Ni/Bentonite and 1 %Co–0 %Ni/Bentonite, indicating the optimal reactivity of 1 %Co–5 %Ni/Bentonite. Our results are, thus, pertinent to catalysis and other applications pursuing optimal electrochemical properties of Ni/Bentonite.
期刊介绍:
The Journal of the Indian Chemical Society publishes original, fundamental, theorical, experimental research work of highest quality in all areas of chemistry, biochemistry, medicinal chemistry, electrochemistry, agrochemistry, chemical engineering and technology, food chemistry, environmental chemistry, etc.