一种具有抗真菌活性的嘌呤类似物的合成及其对真菌IP3-4K的抑制作用。

IF 3.8 2区 医学 Q2 CHEMISTRY, MEDICINAL ACS Infectious Diseases Pub Date : 2025-04-11 Epub Date: 2025-03-31 DOI:10.1021/acsinfecdis.4c00975
Desmarini Desmarini, Daniel Truong, Pooja Sethiya, Guizhen Liu, Bethany Bowring, Henning Jessen, Hue Dinh, Amy K Cain, Philip E Thompson, Julianne T Djordjevic
{"title":"一种具有抗真菌活性的嘌呤类似物的合成及其对真菌IP3-4K的抑制作用。","authors":"Desmarini Desmarini, Daniel Truong, Pooja Sethiya, Guizhen Liu, Bethany Bowring, Henning Jessen, Hue Dinh, Amy K Cain, Philip E Thompson, Julianne T Djordjevic","doi":"10.1021/acsinfecdis.4c00975","DOIUrl":null,"url":null,"abstract":"<p><p>New antifungals are urgently needed to treat deadly fungal infections. Targeting the fungal inositol polyphosphate kinases IP<sub>3-4</sub>K (Arg1) and IP<sub>6</sub>K (Kcs1) is a promising strategy as it has been validated genetically to be crucial for fungal virulence but never pharmacologically. We now report the synthesis of <b>DT-23</b>, an analogue of <i>N</i>2-(<i>m</i>-trifluorobenzylamino)-<i>N</i>6-(<i>p</i>-nitrobenzylamino)purine (<b>TNP</b>), and demonstrate that it more potently inhibits recombinant Arg1 from the priority pathogen <i>Cryptococcus neoformans</i> (<i>Cn</i>) (IC<sub>50</sub> = 0.6 μM) than previous analogues (IC<sub>50</sub> = 10-30 μM). <b>DT-23</b> also inhibits recombinant Kcs1 with similar potency (IC<sub>50</sub> = 0.68 μM) and Arg1 and Kcs1 activity <i>in vivo</i>. Unlike previous analogues, <b>DT-23</b> inhibits fungal growth (MIC<sub>50</sub> = 15 μg/mL) and only 1.5 μg/mL synergizes with Amphotericin B to kill <i>Cn in vitro</i>. <b>DT-23</b>/Amphotericin B is also more protective against <i>Cn</i> infection in an insect model compared to each drug alone. Transcription profiling shows that <b>DT-23</b> impacts early stages in IP synthesis and cellular functions impacted by IPK gene deletion, consistent with its targeted effect. This study establishes the first pharmacological link between inhibiting IPK activity and antifungal activity, providing tools for studying IPK function and a foundation to potentially develop a new class of antifungal drug.</p>","PeriodicalId":17,"journal":{"name":"ACS Infectious Diseases","volume":" ","pages":"940-953"},"PeriodicalIF":3.8000,"publicationDate":"2025-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11997995/pdf/","citationCount":"0","resultStr":"{\"title\":\"Synthesis of a New Purine Analogue Class with Antifungal Activity and Improved Potency against Fungal IP<sub>3-4</sub>K.\",\"authors\":\"Desmarini Desmarini, Daniel Truong, Pooja Sethiya, Guizhen Liu, Bethany Bowring, Henning Jessen, Hue Dinh, Amy K Cain, Philip E Thompson, Julianne T Djordjevic\",\"doi\":\"10.1021/acsinfecdis.4c00975\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>New antifungals are urgently needed to treat deadly fungal infections. Targeting the fungal inositol polyphosphate kinases IP<sub>3-4</sub>K (Arg1) and IP<sub>6</sub>K (Kcs1) is a promising strategy as it has been validated genetically to be crucial for fungal virulence but never pharmacologically. We now report the synthesis of <b>DT-23</b>, an analogue of <i>N</i>2-(<i>m</i>-trifluorobenzylamino)-<i>N</i>6-(<i>p</i>-nitrobenzylamino)purine (<b>TNP</b>), and demonstrate that it more potently inhibits recombinant Arg1 from the priority pathogen <i>Cryptococcus neoformans</i> (<i>Cn</i>) (IC<sub>50</sub> = 0.6 μM) than previous analogues (IC<sub>50</sub> = 10-30 μM). <b>DT-23</b> also inhibits recombinant Kcs1 with similar potency (IC<sub>50</sub> = 0.68 μM) and Arg1 and Kcs1 activity <i>in vivo</i>. Unlike previous analogues, <b>DT-23</b> inhibits fungal growth (MIC<sub>50</sub> = 15 μg/mL) and only 1.5 μg/mL synergizes with Amphotericin B to kill <i>Cn in vitro</i>. <b>DT-23</b>/Amphotericin B is also more protective against <i>Cn</i> infection in an insect model compared to each drug alone. Transcription profiling shows that <b>DT-23</b> impacts early stages in IP synthesis and cellular functions impacted by IPK gene deletion, consistent with its targeted effect. This study establishes the first pharmacological link between inhibiting IPK activity and antifungal activity, providing tools for studying IPK function and a foundation to potentially develop a new class of antifungal drug.</p>\",\"PeriodicalId\":17,\"journal\":{\"name\":\"ACS Infectious Diseases\",\"volume\":\" \",\"pages\":\"940-953\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11997995/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Infectious Diseases\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1021/acsinfecdis.4c00975\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/3/31 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Infectious Diseases","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1021/acsinfecdis.4c00975","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/31 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

摘要

迫切需要新的抗真菌药物来治疗致命的真菌感染。靶向真菌肌醇多磷酸激酶IP3-4K (Arg1)和IP6K (Kcs1)是一种很有前途的策略,因为它已被证实在遗传学上对真菌毒力至关重要,但在药理学上却从未有过。我们合成了一种N2-(m-三氟苯酶氨基)- n6 -(对硝基苄基氨基)嘌呤(TNP)类似物DT-23,并证明它比以前的类似物(IC50 = 10-30 μM)更有效地抑制来自优先病原体新型隐球菌(Cn)的重组Arg1 (IC50 = 0.6 μM)。DT-23对重组Kcs1具有相似的抑制效价(IC50 = 0.68 μM),对Arg1和Kcs1的体内活性也有抑制作用。与之前的类似物不同,DT-23在体外抑制真菌生长(MIC50 = 15 μg/mL),仅1.5 μg/mL与Amphotericin B协同杀死Cn。DT-23/Amphotericin B在昆虫模型中对Cn感染的保护作用也比单独使用每种药物更强。转录谱分析显示,DT-23影响IPK基因缺失对IP合成和细胞功能的早期影响,与其靶向作用一致。该研究首次建立了抑制IPK活性与抗真菌活性之间的药理学联系,为研究IPK功能提供了工具,并为开发一类新的抗真菌药物奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Synthesis of a New Purine Analogue Class with Antifungal Activity and Improved Potency against Fungal IP3-4K.

New antifungals are urgently needed to treat deadly fungal infections. Targeting the fungal inositol polyphosphate kinases IP3-4K (Arg1) and IP6K (Kcs1) is a promising strategy as it has been validated genetically to be crucial for fungal virulence but never pharmacologically. We now report the synthesis of DT-23, an analogue of N2-(m-trifluorobenzylamino)-N6-(p-nitrobenzylamino)purine (TNP), and demonstrate that it more potently inhibits recombinant Arg1 from the priority pathogen Cryptococcus neoformans (Cn) (IC50 = 0.6 μM) than previous analogues (IC50 = 10-30 μM). DT-23 also inhibits recombinant Kcs1 with similar potency (IC50 = 0.68 μM) and Arg1 and Kcs1 activity in vivo. Unlike previous analogues, DT-23 inhibits fungal growth (MIC50 = 15 μg/mL) and only 1.5 μg/mL synergizes with Amphotericin B to kill Cn in vitro. DT-23/Amphotericin B is also more protective against Cn infection in an insect model compared to each drug alone. Transcription profiling shows that DT-23 impacts early stages in IP synthesis and cellular functions impacted by IPK gene deletion, consistent with its targeted effect. This study establishes the first pharmacological link between inhibiting IPK activity and antifungal activity, providing tools for studying IPK function and a foundation to potentially develop a new class of antifungal drug.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Infectious Diseases
ACS Infectious Diseases CHEMISTRY, MEDICINALINFECTIOUS DISEASES&nb-INFECTIOUS DISEASES
CiteScore
9.70
自引率
3.80%
发文量
213
期刊介绍: ACS Infectious Diseases will be the first journal to highlight chemistry and its role in this multidisciplinary and collaborative research area. The journal will cover a diverse array of topics including, but not limited to: * Discovery and development of new antimicrobial agents — identified through target- or phenotypic-based approaches as well as compounds that induce synergy with antimicrobials. * Characterization and validation of drug target or pathways — use of single target and genome-wide knockdown and knockouts, biochemical studies, structural biology, new technologies to facilitate characterization and prioritization of potential drug targets. * Mechanism of drug resistance — fundamental research that advances our understanding of resistance; strategies to prevent resistance. * Mechanisms of action — use of genetic, metabolomic, and activity- and affinity-based protein profiling to elucidate the mechanism of action of clinical and experimental antimicrobial agents. * Host-pathogen interactions — tools for studying host-pathogen interactions, cellular biochemistry of hosts and pathogens, and molecular interactions of pathogens with host microbiota. * Small molecule vaccine adjuvants for infectious disease. * Viral and bacterial biochemistry and molecular biology.
期刊最新文献
Identification and Evaluation of Benzimidazole- Agonists of Innate Immune Receptor NOD2. Ir(III) Nanoaggregates as Photodynamic Antimicrobial Agents against Resistant S. aureus in a Wound Healing Mouse Model. Repurposing GSK2018682 Confers Dual Antibacterial and Antibiofilm Activity against Staphylococcus aureus. Issue Publication Information Issue Editorial Masthead
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1