“猴子的约德尔”——新世界猴子发声的频率跳跃大大超过了人类的音域转换。

Christian T Herbst, Isao T Tokuda, Takeshi Nishimura, Sten Ternström, Vicky Ossio, Marcelo Levy, W Tecumseh Fitch, Jacob C Dunn
{"title":"“猴子的约德尔”——新世界猴子发声的频率跳跃大大超过了人类的音域转换。","authors":"Christian T Herbst, Isao T Tokuda, Takeshi Nishimura, Sten Ternström, Vicky Ossio, Marcelo Levy, W Tecumseh Fitch, Jacob C Dunn","doi":"10.1098/rstb.2024.0005","DOIUrl":null,"url":null,"abstract":"<p><p>We investigated the causal basis of abrupt frequency jumps in a unique database of New World monkey vocalizations. We used a combination of acoustic and electroglottographic recordings <i>in vivo</i>, excised larynx investigations of vocal fold dynamics, and computational modelling. We particularly attended to the contribution of the vocal membranes: thin upward extensions of the vocal folds found in most primates but absent in humans. In three of the six investigated species, we observed two distinct modes of vocal fold vibration. The first, involving vocal fold vibration alone, produced low-frequency oscillations, and is analogous to that underlying human phonation. The second, incorporating the vocal membranes, resulted in much higher-frequency oscillation. Abrupt fundamental frequency shifts were observed in all three datasets. While these data are reminiscent of the rapid transitions in frequency observed in certain human singing styles (e.g. yodelling), the frequency jumps are considerably larger in the nonhuman primates studied. Our data suggest that peripheral modifications of vocal anatomy provide an important source of variability and complexity in the vocal repertoires of nonhuman primates. We further propose that the call repertoire is crucially related to a species' ability to vocalize with different laryngeal mechanisms, analogous to human vocal registers. This article is part of the theme issue 'Nonlinear phenomena in vertebrate vocalizations: mechanisms and communicative functions'.</p>","PeriodicalId":19872,"journal":{"name":"Philosophical Transactions of the Royal Society B: Biological Sciences","volume":"380 1923","pages":"20240005"},"PeriodicalIF":4.7000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11966155/pdf/","citationCount":"0","resultStr":"{\"title\":\"'Monkey yodels'-frequency jumps in New World monkey vocalizations greatly surpass human vocal register transitions.\",\"authors\":\"Christian T Herbst, Isao T Tokuda, Takeshi Nishimura, Sten Ternström, Vicky Ossio, Marcelo Levy, W Tecumseh Fitch, Jacob C Dunn\",\"doi\":\"10.1098/rstb.2024.0005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We investigated the causal basis of abrupt frequency jumps in a unique database of New World monkey vocalizations. We used a combination of acoustic and electroglottographic recordings <i>in vivo</i>, excised larynx investigations of vocal fold dynamics, and computational modelling. We particularly attended to the contribution of the vocal membranes: thin upward extensions of the vocal folds found in most primates but absent in humans. In three of the six investigated species, we observed two distinct modes of vocal fold vibration. The first, involving vocal fold vibration alone, produced low-frequency oscillations, and is analogous to that underlying human phonation. The second, incorporating the vocal membranes, resulted in much higher-frequency oscillation. Abrupt fundamental frequency shifts were observed in all three datasets. While these data are reminiscent of the rapid transitions in frequency observed in certain human singing styles (e.g. yodelling), the frequency jumps are considerably larger in the nonhuman primates studied. Our data suggest that peripheral modifications of vocal anatomy provide an important source of variability and complexity in the vocal repertoires of nonhuman primates. We further propose that the call repertoire is crucially related to a species' ability to vocalize with different laryngeal mechanisms, analogous to human vocal registers. This article is part of the theme issue 'Nonlinear phenomena in vertebrate vocalizations: mechanisms and communicative functions'.</p>\",\"PeriodicalId\":19872,\"journal\":{\"name\":\"Philosophical Transactions of the Royal Society B: Biological Sciences\",\"volume\":\"380 1923\",\"pages\":\"20240005\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2025-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11966155/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Philosophical Transactions of the Royal Society B: Biological Sciences\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1098/rstb.2024.0005\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Philosophical Transactions of the Royal Society B: Biological Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1098/rstb.2024.0005","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

我们在一个独特的新世界猴子发声数据库中调查了突然频率跳跃的因果基础。我们结合了声学和声门电图在体内的记录,切除喉部的声带动力学研究和计算模型。我们特别注意到发声膜的作用:在大多数灵长类动物中发现的薄薄的向上延伸的声带,但在人类中却没有。在六个被调查的物种中的三个,我们观察到两种不同的声带振动模式。第一种,只涉及声带振动,产生低频振荡,类似于潜在的人类发声。第二种,结合了声带膜,导致了更高频率的振荡。在所有三个数据集中都观察到突然的基频移。虽然这些数据让人想起某些人类歌唱风格(如约德尔)中观察到的频率的快速变化,但在研究的非人类灵长类动物中,频率的跳跃要大得多。我们的数据表明,声音解剖的外围修饰提供了非人类灵长类动物声音多样性和复杂性的重要来源。我们进一步提出,呼叫库与一个物种用不同喉部机制发声的能力至关重要,类似于人类的声音寄存器。本文是“脊椎动物发声的非线性现象:机制和交流功能”主题的一部分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
'Monkey yodels'-frequency jumps in New World monkey vocalizations greatly surpass human vocal register transitions.

We investigated the causal basis of abrupt frequency jumps in a unique database of New World monkey vocalizations. We used a combination of acoustic and electroglottographic recordings in vivo, excised larynx investigations of vocal fold dynamics, and computational modelling. We particularly attended to the contribution of the vocal membranes: thin upward extensions of the vocal folds found in most primates but absent in humans. In three of the six investigated species, we observed two distinct modes of vocal fold vibration. The first, involving vocal fold vibration alone, produced low-frequency oscillations, and is analogous to that underlying human phonation. The second, incorporating the vocal membranes, resulted in much higher-frequency oscillation. Abrupt fundamental frequency shifts were observed in all three datasets. While these data are reminiscent of the rapid transitions in frequency observed in certain human singing styles (e.g. yodelling), the frequency jumps are considerably larger in the nonhuman primates studied. Our data suggest that peripheral modifications of vocal anatomy provide an important source of variability and complexity in the vocal repertoires of nonhuman primates. We further propose that the call repertoire is crucially related to a species' ability to vocalize with different laryngeal mechanisms, analogous to human vocal registers. This article is part of the theme issue 'Nonlinear phenomena in vertebrate vocalizations: mechanisms and communicative functions'.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
11.80
自引率
1.60%
发文量
365
审稿时长
3 months
期刊介绍: The journal publishes topics across the life sciences. As long as the core subject lies within the biological sciences, some issues may also include content crossing into other areas such as the physical sciences, social sciences, biophysics, policy, economics etc. Issues generally sit within four broad areas (although many issues sit across these areas): Organismal, environmental and evolutionary biology Neuroscience and cognition Cellular, molecular and developmental biology Health and disease.
期刊最新文献
The effect of habitat health and environmental change on cultural diversity and richness in animals. Strategies for integrating animal social learning and culture into conservation translocation practice. Culture and conservation in baleen whales. Fishy culture in a changing world. Conserving avian vocal culture.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1